The tagpdf package, v0.99x

Ulrike Fischer*

2026-01-12

This package is not meant for direct use in (normal) documents. It started in 2018
as a support tool to research tagging. It is now the base of the code developed in the

latex-1lab bundle for the Tagged PDF project (i.e., loaded by that code) https://www.

latex-project.org/publications/indexbytopic/pdf/.
The package is developed and improved in parallel with the code in the latex-1lab
bundle (part of the core IXTgX distribution), the pdfmanagement-testphase package (the

IATEX PDF management bundle) and the L3 programming layer (part of the IXTgX format).

That means you must ensure that all these components are up-to-date and in sync which
each other.

This package quite probably still contains some bugs. It is in some parts quite slow
because the code currently prefers readability over speed. At some point in the future
its code will be integrated into the I4TgX format and then this package will disappear.
Because of its function as a research and development tool it is important to understand
that this package can still change in incompatible ways from one version to the next.
You need some knowledge about TgX, PDF and perhaps even lua to use it.

Issues, comments, suggestions can be added as issues to these two github tracker:

https://github.com/latex3/tagging-project
or https://github.com/latex3/tagpdf

Contents

1 Introduction

1.1 Taggingandaccessibility o ..
1.2 Enginesandmodes e
1.3 References and target PDFversion
1.4 Validation e
1.5 Exampleswanted! e
1.6 Proof of concept: the tagging of the documentationitself

Loading
2.1 Modes and package options e e e e e
2.2 Setupandactivation e e e

*fischer@troubleshooting-tex.de

OGO W

© © xR

 − 1

-1

-1

https://www.latex-project.org/publications/indexbytopic/pdf/
https://www.latex-project.org/publications/indexbytopic/pdf/
https://github.com/latex3/tagging-project
https://github.com/latex3/tagpdf

3 Tagging
3.1 Threetasks o i i i e e e e e e
3.2 Task 1: Marking the chunks: the mark-content-step
3.2.1 Generic mode versus luamodeinthemc-task
3.2.2 Commands to mark contentandchunks.
3.2.3 Retrievingdata e

3.2.4 Luamode: global or not global — that is the question
325 TIPS . . . e e e
3.2.6 HeaderandFooter
3.2.7 Linksand otherannotations
328 Math e e
3.29 Splitparagraphs e
3.2.10 Automatic tagging of paragraphs,
3.3 Task2: Markingthestructure,

3.3.1 Structure types v i i e e e e e e e e e e e e e e e e
3.3.2 Sectioning e e e e e
3.3.3 Commands to definethestructure

3.3.4 Updatingstructurekeys 0.
3.3.5 Rootstructure 0 i i i i i e e e e e e e
3.3.6 Attributes and attributeclasses o

3.4 Task3:treeManagementttt i e e e
3.5 Afully marked up documentbody
3.6 Interruptingthetagging
3.7 Addingtaggingtocommands

4 Alternative text, ActualText and text-to-speech software

5 Standard types and new tags
5.1 ThelatexNamMESPACE v v v v v v it e e e e e e e e e e e e e e e e
5.2 Theusernamespaceottt m ittt
5.3 FallbackRoleMap e
54 Mathml

6 Checking parent-child rules
7 “Real” space glyphs
8 Structure destinations

9 Storing and reusing boxes
9.1 Boxeswithouttaggingcommands.,
9.2 Boxeswithtaggingcommands.
9.3 Detecting taggingcommands e
9.4 Puttingeverythingtogether

10 Accessibility is not only tagging
11 CSS style definition for derivation to html

12 Debugging

12
13
14
16
16
19
20
21
21
23
24
25
26
27
27
27
28
31
32
32
32
33
34
35

35

35
37
37
37
38

38

39

40

40
41
41
42
42

43

43

44

13 To-do 45

14 History 46
14.1 Changesin0.3 e e e 46
14.2 Changesin 0.5 e e e 46
14.3 Changesin0.6 e e 46
14.4 Changesinversion0.61 e 46
14.5 Changesinversion0.8 46
14.6 Changesinversion0.81 i 47
14.7 Changesinversion0.82 i i i i e 47
14.8 Changesinversion0.83 i e 47
14.9 Changesinversion0.90 e 47
14.10 Changesinversion0.92 it e 48
14.11 Changesinversion0.93 e 48
14.12 Changesinversion0.94 e 49
14.13 Changesinversion0.95 i i i i e 49
14.14 Changesinversion0.96 i i i 49
14.15 Changesinversion0.98 e 49
14.16 Changesinversion0.98a, 49
14.17 Changesinversion0.98b 50
14.18 Changesinversion0.98e i 50
14.19 Changesinversion0.98k e 50
14.20 Changesinversion0.98l 50
14.21 Changesinversion0.99f 50
14.22 Changesinversion0.99m, 50

References 50

A Some remarks about the PDF syntax 51

1 Introduction

For many years the creation of accessible, tagged PDF-files with I4TgX that conform to the
PDF/UA standard has been on the agenda of TgX-meetings. Many people agree that this is
important and Ross Moore has done quite some work on it. There is also a TUG-mailing list
and a web page [10] dedicated to this topic.

In my opinion missing were means to experiment with tagging and accessibility. Means to
try out, how difficult it is to tag some structures, means to try out, how much tagging is really
needed (standards and validators don't need to be right ...), means to test what else is needed so
that a PDF works e.g. with a screen reader, means to try out how core IXIgX commands behave
if tagging is used. Without such experiments it is in my opinion quite difficult to get a feeling
about what has to be done, which kernel changes are needed, and how packages should be
adapted.

This package was developed to close this gap by offering core commands to tag a PDF'. My
hope was that the knowledge gained by the use of this package would in the end allow to decide
if and how code to do tagging should become part of the IXIgX kernel.

n case you don’t know what this means: there will be some explanations later on.

The code has been written so that it can be added as module to the IXTgX kernel itself if it
turned out to be usable. It therefore avoid to patch commands from other packages. It was
also not an aim of the package to develop patches to directly enable tagging in other packages.
While in the end changes to various commands in many classes and packages will be needed
to automatically get tagged PDF files, these changes should be done by class, package and
document writers themselves using a sensible API provided by the kernel and not by some
external package that adds patches everywhere and would need constant maintenance —
one only need to look at packages like tex4ht or bidi or hyperref to see how difficult and
sometimes fragile this is.

The package is now a part of the Tagged PDF project and triggered already various changes
in the KTEX kernel and the engines: There is a new PDF management, the new para hooks
allows to automatically tag paragraphs, after changes in the output routine page breaks and
header and footer are handled correctly, the engines now support structure destinations. More
changes are in the latex-lab bundle and are loaded through the tagging keys.

I'm sure that tagpdf still has bugs. Bugs reports, suggestions and comments can be added
to the issue tracker on github either https://github.com/latex3/tagpdf or https://github.
com/latex3/tagging-project.

Please also check the github site and latex-lab for new examples and improvements.

1.1 Tagging and accessibility

While the package is named tagpdf the goal is also accessible PDF-files. Tagging is one (the
most difficult) requirement for accessibility but there are others. [will mention some later on
in this documentation, and - if sensible — also add code, keys or tips for them.

So the name of the package is a bit wrong. As excuse I can only say that it is short and easy
to pronounce (and of course, it was always meant to be temporary).

1.2 Engines and modes

Theoretically, the package works with all engines, but the xelatex and the latex-dvips-route are
basically untested and they also don’'t support real space glyphs so I don’'t recommend them.
lualatex is the most powerful and safe modus and should be used for new documents, it is
slower than pdflatex but requires less compilations. pdflatex works ok and can be used for
legacy documents; it needs more compilations to resolve all cross references needed for the
tagging.

The package has two modes: the generic mode which should work in theory with every en-
gine and the lua mode which works only with lualatex and (since version 0.98k) with dvilualatex.
Since version 0.99m, the lua mode is forced if luatex is detected, otherwise generic mode is
used.

I implemented the generic mode first. Mostly because my TgX skills are much better than
my lua skills and I wanted to get the TgX side right before starting to fight with attributes and
node traversing.

While the generic mode is not bad and I spent quite some time to get it working I nevertheless
think that the lua mode is the future and the only one that will be usable for larger documents.
PDF is a page orientated format and so the ability of luatex to manipulate pages and nodes after
the TgX-processing has finished is really useful here. Also with luatex characters are normally
already given as Unicode.

The package uses quite a lot labels (in generic mode more than with luamode). It is now
based on the property module of the IXTgX kernel. This module provides expandable references

https://github.com/latex3/tagpdf
https://github.com/latex3/tagging-project
https://github.com/latex3/tagging-project

but the drawback is that (right now) they don’t always give good rerun messages if they have
changed. I advise to use the rerunfilecheck package as a intermediate work-around and when
using pdflatex compile at least once or twice more often then normal.

1.3 References and target PDF version

My main reference for the first versions of this package was the free reference for PDF 1.7. [2]
and so they implemented only support for PDF 1.7.

In 2018 PDF 2.0. has been released. The reference can now be bought at no cost through
the PDF association.

PDF 2.0 has a number of features that are really needed for good tagging: it knows more
structure types, it allows to add associated files to structures—these are small, embedded files
that can, for example, contain the mathML or source code of an equation—, it knows structure
destinations, which allows to link to a structure. It knows the MathML namespace.

IATEX therefore targets PDF 2.0 and tagpdf has support for associated files, for name spaces
and other PDF 2.0 features.

PDF 2.0 features are currently (begin of 2025) still not well supported by PDF consumer, but
some progress has been made. Foxit can handle MathML associated files and to some extend
MathML structure elements and together with development versions of NVDA and MathCat
reading of equations is already quite good. The PDF Accessibility Checker (PAC) no longer
crashes if one tries to load a PDF 2.0 file. We recommend to use PDF 2.0 if possible and then to
complain to the PDF consumer if something doesn’'t work.

The package doesn't try to suppress all 2.0 features if an older PDF version is produced. It
normally doesn’t harm if a PDF contains keys unknown in its version and it makes the code faster
and easier to maintain if there aren’t too many tests and code paths; so for example associated
files will always be added. But tests could be added in case this leads to incompatibilities.

1.4 Validation

PDF’s created with the commands of this package must be validated:

* One must check that the PDF is syntactically correct. It is rather easy to create broken
PDF: e.g. if a chunk is opened on one page but closed on the next page or if the document
isn't compiled often enough.

* One must check how good the PDF follows requirements of standards like PDF/UA for-
mally?.

* One must check how good the accessibility is practically.

Syntax validation and formal standard validation can be done with the validator veraPDF
[13] which can also handle PDF 2.0 files. Other options (only for PDF 1.7 and older) are preflight
of the (non-free) Adobe Acrobat and the free PDF Accessibility Checker (PAC 2024) [5]. A quite
useful tool is “Next Generation PDF” [3], a browser application which converts a tagged PDF to
html, allows to inspect its structure and also to edit the structure. For PDF 2.0 files there is also
a checker based on the Arlington model from veraPDE

A tool developed by the IATEX team allows to extract the structure as XML and to validate it
against a schema. This can be tested as https://texlive.net/showtags.

2The PDF/UA-2 standard for PDF 2.0 will hopefully be released begin of 2024.

https://texlive.net/showtags

Practical validation is naturally the more complicated part. It needs screen reader, users
which actually knows how to handle them, can test documents and can report where a PDF has
real accessibility problems.

Preflight woes

Sadly validators can not be always trusted. As an example for an reason that I don’t understand
the adobe preflight don't like the list structure L. It is also possible that validators contradict:
that the one says everything is okay, while the other complains. Generally when in doubt I
recommend to use and trust verapdf.

1.5 Examples wanted!

To make the package usable examples are needed: examples that demonstrate how various
structures can be tagged and which patches are needed, examples for the test suite, examples
that demonstrates problems.

Feedback, contributions and corrections are welcome!

All examples should use the \DocumentMetadata key uncompress so that uncompressed PDF
are created and the internal objects and structures can be inspected and be compared by the
13build checks.

1.6 Proof of concept: the tagging of the documentation itself

Starting with version 0.6 the documentation itself has been tagged. The tagging wasn’t (and
isn't) in no way perfect. The validator from Adobe didn't complain, but PAC 3 wanted alternative
text for all links (no idea why) and so I put everywhere simple text like “link” and “ref”. The
links to footnotes gave warnings, so I disabled them. I used types from the PDF version 1.7,
mostly as I had no idea what should be used for code in 2.0. Margin notes were simply wrong
and there were tagging commands everywhere ...

The tagging has been improved and automated over time in sync with improvements and
new features in the XTgX kernel, the latex-lab bundle and the PDF management code and is now
much better. Only a few structures—mostly some from currently unsupported packages— still
need manual tagging. But sadly the output of the validators don't quite reflect the improvements.
The documentation uses now PDF 2.0 and while the newest PAC 2024 can at least open the
file it can not validate properly the file. It doesn’t fully supports PDF 2.0 (see figure 1). It also
complains about the tabular header cells as it doesn’t follow attribute classes, see figure 2. The
Adobe validator has a bug and doesn'’t like the (valid) use of the Lbl tag for numbers outside
lists and so complains about the tagging of the table of content entries (see figure 3).

But even if the documentation would pass all the tests of the validators: as mentioned
above passing a formal test doesn't mean that the content is really good and usable. The user
commands used for the tagging and also some of the patches used are still rather crude. So
there is lot space for improvement.

Be aware that to create the tagged version a current lualatex-dev and a current version
of the pdfmanagment-testphase package is needed.

Unsupported PDF version X

This document is based on the PDF standard 2.0. PAC currently
* fully supports documents up to and including PDF standard 1.7.

The document is now being opened and processed by PAC. It is
possible that errors or unreliable results may occur.

OK

Figure 1: PAC 2024 reading a PDF 2.0 file

Checkpoint > & Annotations

«" PDF Syntax (ISO 32000-1) > « Figures

«" Fonts

« Content v ¥ Tables

() Embedded Files " Table regularity

«” Natural language

¢ Structure Elements v ¥ Table header cell assignments
A Structure tree R Table header cell has no :
«” Role mapping

«” Alternative Descriptions x Table header cell has no :
" Metadata 9 Table header cell has no :
«" Document settings

R Table header cell has no :
@, r 3 Table header cell has no

Figure 2: PAC 2024 Validation of header cells

> Formulare

> Alternativtext
> Tabellen
v Listen (1 Problem)

Listenelemente - Bestander

v) ~Lbl" und ,LBody" - Fehlg
Lbl/LBody 1
Lbl/LBody 2

Lbl/LBody 3

Figure 3: Adobe Acrobat complaining about the Lbl use

2 Loading

The package requires the new PDF management. With a current KTgX (2025-06-01 or newer) the
PDF managementisloaded if you use the \DocumentMetadata command before \documentclass.
The tagpdf package can then be loaded and activated by using the tagging=on key. The exact
behavior of the tagging key is documented in documentmetadata-support-doc.pdf which is
part of the latex-1ab bundle.

Various parts of the code differentiate between PDF version 2.0 and lower versions. By default
\DocumentMetadata will now set the PDF version to 2.0. If PDF 1.7 is wanted it is required to
set the version early in the first \DocumentMetadata command so that tagpdf can pick up the
correct code path.

\DocumentMetadata
{
tagging=on,
pdfstandard=ua-2, % pdfstandard can be set too
}
\documentclass{article}
\begin{document}
some text
\end{document}

Deactivation

When loading tagpdf through the tagging=on keys, it is automatically activated. To deactivate it
while still retaining all the other new code from the latex-lab files, you can use the tagging=off
key.

Starting with IXTgX 2025-11-01, you can also use \DocumentMetadata{}, which will then
do the same as \DocumentMetadata{tagging=off}. This also deactivates the interword space
code.

Loading as package needs activation!

Itis not recommended anymore, but the package can also be loaded normally with \usepackage
or \RequirePackage. But it still requires the PDF management, so you need to do something
like this:

\RequirePackage{pdfmanagement}
\RequirePackage{tagpdf}

But it will then — apart from loading more packages and defining a lot of things — not do
much. You will have to activate it with \tagpdfsetup.

The PDF management will in any case load tagpdf-base a small package that provides
no-op versions of the main tagging commands.

Most commands do nothing if tagging is not activated, but in case a test is needed a com-
mand (with the usual p,T,F variants) is provided:

\tag_if_active:TF

The check is true only if everything is activated. In all other cases (including if tagging has
been stopped locally) it will be false.

2.1 Modes and package options

The package has two different modes: The generic mode works (in theory, currently only fully
tested with pdflatex) probably with all engines, the lua mode only with lualatex. The differences
between both modes will be described later.

Starting with version 0.99m the mode is set automatically (lua mode for luatex, generic mode
otherwise). The package options do nothing anymore and will be remove in future versions.

2.2 Setup and activation

\tagpdfsetup{(key-val-list)}

This command setups the general behavior of the package. The command should be
normally used only in the preamble (for a few keys it could also make sense to change them in
the document).

The key-val list understands at least the following keys. More keys are defined in some of the
latex-lab module, see table 1 for an overview which also includes older, now deprecated names.

The command is deactivated before the class is loaded if the key tagging=off is used in
\DocumentMetadata and then does nothing.

activate/all Boolean, initially false. Activates everything, that’s normally the sensible thing to
do.

activate Likeactivate/all, additionally is opens at begin document a structure with \tagstructbegin
and closes it at end document. The key accepts as value a tag name which is used as the
tag of the structure. The default value is Document.

luamode

activate/mc Boolean, initially false. Activates the code related to marked content.

activate/struct Boolean, initially false. Activates the code related to structures. Should be used
only if activate/mc has been used too.

activate/struct-dest Boolean, initially true. Starting with version 0.93 tagpdf will create au-
tomatically structure destinations (see section 8 if hyperref is used and if the engine
supports it. With this key this can be suppressed.

activate/tree Boolean, initially false. Activates the code related to trees. Should be used only if
the two other keys has been used too.

activate/spaces Boolean. The key activates/deactivates the insertion of space glyphs, see sec-
tion 7. In the luamode it only works if at least activate/mc has been used. Itis on by default if
you use tagging=on in \DocumentMetadata. The tagging=off key of \DocumentMetadata
deactivates it. The old name of the key interwordspace is still supported but deprecated.

activate/softhyphen Boolean. luamode only. The key activates/deactivates the replacing of
hard hyphens from hyphenation by soft hyphens. By default this is activated.

role/new-tag Allows to define new tag names, see section 5 for a description.
role/new-attribute This key takes two arguments and declares an attribute. See 3.3.6.

role/map-tags This key allows to remap the structure tags. Currently it supports only two
values: false (the default) and pdf which maps all tags to their standard PDF role, e.g.
itemize will be mapped to L.

para/tagging Boolean. This activate/deactivates the automatic tagging of paragraphs, see
3.2.10 for more background. It uses the para/begin and para/end hooks. With more
tagging support conditions will be added, that means the code is bound to change! Para-
graphs can appear in many unexpected places and the code can easily break, so there is
also an option to see where such paragraphs are:

para/tag String. This key changes the second tag used by the paratagging code. The default
tag is text, a IATgX specific tag that is role mapped to P. A useful local setting here can be
NonStruct, which creates a structure “without meaning”.

para/maintag String. This key changes the first tag used by the paratagging code. The default
tag is text-unit, a IXTgX specific tag that is role mapped to Part.

page/tabsorder Choice key, possible values are row, column, structure, none. This decides if a
/Tabs value is written to the dictionary of the page objects. Not really needed for tagging
itself, but one of the things you probably need for accessibility checks. So I added it.
Currently the tabsorder is the same for all pages. Perhaps this should be changed

activate/tagunmarked Boolean, initially true. When this boolean is true, the lua code will try
to mark everything that has not been marked yet as an artifact. The benefit is that one
doesn’t have to mark up every deco rule oneself. The danger is that it perhaps marks
things that shouldn't be marked - it hasn’t been tested yet with complicated documents
containing annotations etc.

10

luamode

viewer /startstructure A structure number. If a OpenAction is set in the PDF Catalog (which is
normally the case if hyperref is used) a structure destination pointing to the structure is
added. The initial value is structure 1 (the Document structure), the default value is the
current structure. The key can be used more than once, the last setting will win.

debug/uncompress Sets both the PDF compresslevel and the PDF objcompresslevel to 0 and so
allows to inspect the PDE No really useful anymore as this can also be setin \DocumentMetadata.

debug This keys knows a number of sub-keys to set various debug options.

debug/show This takes a comma list of keywords:

spaces/spaces0ff: Thathelpsinlua mode to see where space glyph will be inserted
if activate/spaces is activated. This can also be activated with the now deprecated key
show-spaces

para/paraOff: This (locally) activates/deactivates small red and green numbers in
the places where the paratagging hook code is used.

debug/log Choice key, possible values none, v, vv, vwv, all. Setups the log level. Changing
the value affects currently mostly the luamode: “higher” values gives more messages
in thelog. The current levels and messages have been setup in a quite ad-hoc manner
and will need improvement.

Table 1: Overview of the keys for \tagpdfsetup

new key name old key name value type defined in
297 root-AF string code tagpdf-struct
root-supplemental-file string code tagpdf-struct
attach-css string bool tagpdf-user
css-list string code tagpdf-user
css-list-remove string code tagpdf-user
css-list-add string code tagpdf-user
activate activate string meta tagpdf
activate/all activate-all boolean meta tagpdf
activate/mc activate-mc boolean bool tagpdf
activate/softhyphen — boolean bool tagpdf
activate/spaces interwordspace boolean code tagpdf-space
activate/struct activate-struct boolean bool tagpdf
activate/struct-dest no-struct-dest boolean bool tagpdf
activate/tagunmarked tagunmarked boolean bool tagpdf
activate/tree activate-tree boolean bool tagpdf
role/mathml-tags mathml-tags boolean bool tagpdf-roles
role/new-tag add-new-tag string code tagpdf-roles
role/new-attribute newattribute string code tagpdf-struct
role/user-NS — string code tagpdf-roles
role/map-tags — choice code tagpdf-roles

11

Table 1: Overview of keys for \tagpdfsetup (continued)

new key name old key name value type defined in
debug/show various choice code various
debug/show=para paratagging-show — code tagpdf-user
debug/show=paraOff — code tagpdf-user
debug/show=spaces show-spaces — code tagpdf-spaces
debug/show=spacesOff — — code tagpdf-spaces
debug/log log choice code tagpdf
debug/uncompress uncompress — code tagpdf
debug/parent-child-check choice code tagpdf
viewer/pane/mathml — boolean bool latex-lab-math (dev)
viewer/pane/mathsource — boolean bool latex-lab-math (dev)
viewer/startstructure — number code tagpdf-tree
page/tabsorder tabsorder choice code tagpdf
page/exclude-header-footer exclude-header-footer choice code tagpdf-user
para/tagging paratagging boolean bool tagpdf-user
para/tag paratag string code tagpdf-user
para/maintag — string code tagpdf-user
para/flattened — boolean bool tagpdf-user
math/alt/use — boolean bool latex-lab-math
math/mathml/write-dummy — — code latex-lab-math
math/mathml/sources — clist clist latex-lab-math
math/mathml/AF — boolean bool latex-lab-math
math/tex/AF — boolean bool latex-lab-math
math/setup — string code latex-lab-math
table/tagging table-tagging choice code latex-lab-table
table/header-rows table-header-rows clist clist latex-lab-table
text/lang — string code tagpdf-user

\tagtool{(key-val)}
\tag_tool:n{(key-val)}

These commands are deprecated. Tagging sockets (documented in source2e) should be

used instead.

3 Tagging

PDF is a page orientated graphic format. It simply puts ink and glyphs at various coordinates
on a page. A simple stream of a page can look like this®:

3The appendix contains some remarks about the syntax of a PDF file

12

mc-task

struct-task

tree-task

stream

BT

/F27 14.3462 Tf %select font

89.291 746.742 Td %move point
[(1)-574(Intro)-32(duction)]TJ YJprint text

/F24 10.9091 Tf %select font
0 -24.35 Td %move point
[(Let's)-331(start)]TJ %print text
205.635 -605.688 Td %move point
[(OITI %print text

ET

endstream

From this stream one can extract the characters and their placement on the page but not
their semantic meaning (the first line is actually a section heading, the last the page number).
And while in the example the order is correct there is actually no guaranty that the stream
contains the text in the order it should be read.

Tagging means to enrich the PDF with information about the semantic meaning and the
reading order. (Tagging can do more, one can also store all sorts of layout information like font
properties and indentation with tags. But as I already wrote this package concentrates on the
part of tagging that is needed to improve accessibility.)

3.1 Three tasks

To tag a PDF three tasks must be carried out:

1. The mark-content-task: The document must add “labels” to the page stream which
allows to identify and reference the various chunks of text and other content. This is the
most difficult part of tagging — both for the document writer but also for the package code.
At first there can be quite many chunks as every one is a leaf node of the structure and so
often a rather small unit. At second the chunks must be defined page-wise — and this is
not easy when you don't know where the page breaks are. Also in a standard document a
lot text is created automatically, e.g. the toc, references, citations, list numbers etc and it
is not always easy to mark them correctly.

2. The structure-task: The document must declare the structure. This means marking the
start and end of semantically connected portions of the document (correctly nested as a
tree). This too means some work for the document writer, but less than for the mc-task: at
first quite often the mc-task and the structure-task can be combined, e.g. when you mark
up a list number or a tabular cell or a section header; at second one doesn’t have to worry
about page breaks so quite often one can patch standard environments to declare the
structure. On the other side a number of structures end in IXTgX only implicitly — e.g. an
item ends at the next item, so getting the PDF structure right still means that additional
mark up must be added.

3. The tree management: At last the structure must be written into the PDE For every
structure an object of type StructElem must be created and flushed with keys for the
parents and the kids. A parent tree must be created to get a reference from the mc-chunks
to the parent structure. A role map must be written. And a number of dictionary entries.
All this is hopefully done automatically and correctly by the package

13

Page stream with marked content

......... ’ mc-chunk 1 H mc-chunk 2 H mc-chunk 3 H mc-chunk3|

Structure

’ Sect (start section) ‘

’ H (header section) ‘

mc-chunk 1}

’ /H (end header) ‘

’ P (start paragraph) ‘

mc-chunk 3
mc-chunk 4

’ /P (end paragraph) ‘

’ /Sect (end section) ‘

Figure 4: Schematical description of the relation between marked content in the page stream
and the structure

3.2 Task 1: Marking the chunks: the mark-content-step

To be able to refer to parts of the text in the structure, the text in the page stream must get
“labels”. In the PDF reference they are called “marked content”. The three main variants needed
here are:

Artifacts They are marked with of a pair of keywords, BMC and EMC which surrounds the text.
BMC has a single prefix argument, the fix tag name /Artifact. Artifacts should be used for
irrelevant text and page content that should be ignored in the structure. Sadly it is often
not possible to leave such text simply unmarked - the accessibility tests in Acrobat and
other validators complain.

/Artifact BMC
text to be marked
/EMC

Artifacts with a type They are marked with of a pair of keywords, BDC and EMC which surrounds
the text. BDC has two arguments: again the tag name /Artifact and a following dictionary

14

which allows to specify the suppressed info. Text in header and footer can e.g. be declared
as pagination like this:

/Artifact <</Type /Pagination>> BDC
text to be marked
/EMC

Content Content is marked also with of a pair of keywords, BDC and EMC. The first argument
of BDC is a tag name which describes the structural type of the text* Examples are /P
(paragraph), /H2 (heading), /TD (table cell). The reference mentions a number of standard
types but it is possible to add more or to use different names.

In the second argument of BDC — in the property dictionary — more data can be stored.
Required is an /MCID-key which takes an integer as a value:

/H1 <</MCID 3>> BDC
text to be marked
/EMC

This integer is used to identify the chunk when building the structure tree. The chunks
are numbered by page starting with 0. As the numbers are also used as an index in an
array they shouldn’t be “holes” in the numbering system (It is perhaps possible to handle
a numbering scheme not starting by 0 and having holes, but it will enlarge the PDF as one
would need dummy objects.).

It is possible to add more entries to the property dictionary, e.g. a title, alternative text or
alocal language setting.

The needed markers can be added with low level code e.g. like this (in pdftex syntax):

\pdfliteral page {/H1 <</MCID 3>> BDC}’
text to be marked
\pdfliteral page {EMC}%

This sounds easy. But there are quite a number of traps, mostly with pdfLaTeX:

1. PDF is a page oriented format. And this means that the start BDC/BMC and the correspond-
ing end EMC must be on the same page. So marking e.g. a section title like in the following
example won't always work as the literal before the section could end on the previous

page:

\pdfliteral page {/H1 <</MCID 3>> BDC} problem: possible pagebreak here
\section{mysection}
\pdfliteral page {EMC}/

Using the literals inside the section argument is better, but then one has to take care that
they don’t wander into the header and the toc.

4There is quite some redundancy in the specification here. The structural type is also set in the structure tree. One
wonders if it isn’t enough to use always /SPAN here.

15

Generic
mode only

2. Literals are “whatsits” nodes and can change spacing, page and line breaking. The literal
behind the section in the previous example could e.g. lead to a lonely section title at the
end of the page.

3. The /MCID numbers must be unique on a page. So you can’t use the literal in a saved box
that you reuse in various places. This is e. g. a problem with longtable as it saves the
table header and footer in a box.

4. The /MCID-chunks are leaf nodes in the structure tree, so they shouldn’t be nested.

5. Often text in a document is created automatically or moved around: entries in the table
of contents, index, bibliography and more. To mark these text chunks correctly one has
to analyze the code creating such content to find suitable places to inject the literals.

6. There exist environments which process their content more than once — examples are
align and tabularx. So one has to check for doublets and holes in the counting system.

7. PDF is a page oriented format. And this means that the start and the end marker must be
on the same page ... so what to do with normal paragraphs that split over pages??. This
question will be discussed in subsection 3.2.9.

3.2.1 Generic mode versus lua mode in the mc-task

While in generic mode the commands insert the literals directly and so have all the problems
described above the lua mode works quite differently: The tagging commands don’t insert
literals but set some (global) attributes which are attached to all the following nodes. When the
page is shipped out some lua code is called which wanders through the shipout box and injects
the literals at the places where the attributes changes.

This means that quite a number of problems mentioned above are not relevant for the lua
mode:

1. Page breaks between start and end of the marker are not a problem. So you can mark a
complete paragraph. If a pagebreak occur directly after an start marker or before an end
marker this can lead to empty chunks in the PDF and so bloat up PDF a bit, but this is
imho not really a problem (compared to the size increase by the rest of the tagging).

2. The commands don’t insert literals directly and so affect line and page breaking much
less.

3. The numbering of the MCID are done at shipout, so no label/ref system is needed.
4. The code can do some marking automatically. Currently everything that has not been
marked up by the document is marked as artifact.
3.2.2 Commands to mark content and chunks

In generic mode is vital that the end command is executed on the same page as the begin
command. So think carefully how to place them. For strategies how to handle paragraphs that
split over pages see subsection 3.2.9.

\tagmcbegin{(key-val-list)}
\tag_mc_begin:n{(key-val-list)}

16

lua mode

These commands insert the begin of the marked content code in the PDE They don't start a

paragraph. They don'’t start a group. Such markers should not be nested. The command will
warn you if this happens.

In the generic mode the commands insert literals. These are whatsits and so can affect

spacing. In lua mode they set an attribute globally.

The key-val list understands the following keys:

tag This key is optional. By default the tag name of the surrounding structure is used, which

normally should be fine. But if needed the name can be set explicitly with this key. The
value of the key is typically one of the standard type listed in section 5 (without a slash
at the begin, this is added by the code). It is possible to setup new tags, see the same
section. The value of the key is expanded, so it can be a command. The expansion is
passed unchanged to the PDE so it should with a starting slash give a valid PDF name
(some ascii with numbers like H4 is fine).

artifact This will setup the marked content as an artifact. The key should be used for content

that should be ignored. The key can take one of the values pagination, pagination/header,
pagination /footer, layout, page, background and notype (this is the default). Text in the header
and footer should normally be marked with artifact=pagination or pagination/header, pagi-
nation/footer but simply artifact (as it is now done automatically) should be ok too.

It is not quite clear if rules and other decorative graphical objects needs to be marked up
as artifacts. Acrobat seems not to mind if not, but PAC 3 complained.

The validators complain if some text is not marked up, but it is not quite clear if this is a
serious problem.

The lua mode will mark up everything unmarked as artifact=notype. You can suppress
this behavior by setting the tagpdfsetup key activate/tagunmarked to false. See section
2.2.

stash Normally marked content will be stored in the “current” structure. This may not be what

you want. As an example you may perhaps want to put a marginnote behind or before
the paragraph it is in the tex-code. With this boolean key the content is marked but not
stored in the kid-key of the current structure.

label This key sets a label by which you can call the marked content /ater in another structure

alt

(if it has been stashed with the previous key). Internally the label name will start with
tagpdf-.

This key inserts an /A1t value in the property dictionary of the BDC operator. See section 4.
The value is handled as verbatim string, commands are not expanded but the value will
be expanded first once (so works like the key alttext-o in previous versions which has
been removed). If the value is empty, nothing will happen.

That means that you can do something like in the following listing and it will insert
\frac{a}{b} (hex encoded) in the PDE

\newcommand\myalttext{\frac{a}{b}}
\tagmcbegin{tag=P,alt=\myalttext}

17

actualtext Thiskeyinserts an /ActualText value in the property dictionary of the BDC operator.
See section 4. The value is handled as verbatim string, commands are not expanded but
the value will be expanded first once (so works like the key actualtext-o in previous
versions which has been removed). If the value is empty, nothing will happen.

That means that you can do something like in the following listing and it will insert X (hex
encoded) in the PDE

\newcommand\myactualtext{X}
\tagmcbegin{tag=Span,actualtext=\myactualtext}

According to the PDF reference, /ActualText should only be used on marked content
sequence of type Span. This is not enforced by the code currently. There is also some
discussion going on, if /ActualText can actually be used in a MC dictionary or if it should
be in a separate BDC-operator.

lang This (experimental) key allows to add a /Lang entry on the MC. This probably is not
conforming to the PDF specification but it works in Adobe reader. The value is a BCP-
string, e.g. en or de. The key is not so useful as you typically want to the set ‘/Lang’ entry
on all MC inside a region or structure. Once the requirements of the PDF specification
has been clarified the interface will be extended.

raw This key allows you to add more entries to the properties dictionary. The value must be
correct, low-level PDE E.g. raw=/A1t (Hello) will insert an alternative Text.

\tagmcend
\tag_mc_end:

These commands insert the end code of the marked content. They don’t end a group and it
doesn’t matter if they are in another group as the starting commands. In generic mode both
commands check if there has been a begin marker and issue a warning if not. In luamode it
is often possible to omit the command, as the effect of the begin command ends with a new
\tagmcbegin anyway.

\tagmcuse{(label)}
\tag_mc_use:n{(label)}

These commands allow you to record a marked content that you stashed away into the
current structure. Be aware that a marked content can be used only once — the command will
warn you if you try to use it a second time.

\tag_mc_end_push:
\tag_mc_begin_pop:n{(key-val-list)}

If there is an open mc chunk, the first command ends it and pushes its tag on a stack. If
there is no open chunk, it puts —1 on the stack (for debugging). The second command removes
avalue from the stack. If it is different from —1 it opens a tag with it. The command is mainly
meant to be used inside hooks and command definitions so there is only an expl3 version.
Perhaps other content of the mc-dictionary (for example the Lang) needs to be saved on the
stacked too.

18

\tagmcifinTF{(true code)}{(false code)}
\tag_mc_if_in:TF{(true code)}{{false code)}

These commands check if a marked content is currently open and allows you to e.g. add
the end marker if yes.

In generic mode, where marked content command shouldn’t be nested, it works with a
global boolean.

In lua mode it tests if the mc-attribute is currently unset. You can’t test the nesting level
with it!

\tag_mc_reset_box:N{(box)}

In lua mode this command will process the given box and reset all mc related attributes in
the box to the current values. This means that if the box is used all its contents will be a kid
of the current structure. This should (probably) only be used on boxes which don't contain
tagging commands. See below section 9 for more details.

3.2.3 Retrieving data

With more elaborate tagging the need arise to retrieve and store current data.

\tag_get :n{(key word)?}

This (expandable) command returns the values of some variables. Currently, the working
key words are

mc_tag: the tag name of the current mc-chunk
struct_tag: the tag name of the current structure

struct_id: The ID of the current structure. This is a string and is returned including
parentheses.

struct_num: This returns a number and works also if only tagpdf-base has been loaded,
but then doesn’t give the same output: if tagpdf is loaded and taggingis active, struct_num
gives the number of currently active structure, so it reverts to the parent number if a
structure is closed. If only tagpdf-base is loaded nesting of structure is not tracked and so
the command gives back the number of the last structure that has been created. In luatex
this number can also be retrieved with the lua function 1tx.tag.get_struct_num().

struct_counter: This returns a number and works also if only tagpdf-base has been
loaded. It gives back the state of the absolute structure counter and so the number
of the last structure that has been created. This can be used to detect if in a piece of
code there are structure commands. Be aware that this is a IXIgX counter and so is
reset in some places. In luatex this number can also be retrieved with the lua function
1tx.tag.get_struct_counter (). The number of the next structure to be created is then
1tx.tag.get_struct_counter () increased by one), this can also be retrieved with the
function 1tx.tag.get_struct_num_next ().

mc_counter: This returns a number and works also if only tagpdf-base has been loaded.
It gives back the state of the absolute mc-counter and so number of the last mc-chunk that
has been created. This can be used to detect if in a piece of code there are mc-commands.

19

lua mode

3.2.4 Luamode: global or not global - that is the question

In luamode the mc-commands set and unset an attribute to mark the nodes. One can view
such an attribute like a font change or a color: they affect all following chars and glue nodes
until stopped.

From version 0.6 to 0.82 the attributes were set locally. This had the advantage that the
attributes didn’t spill over in area where they are not wanted like the header and footer or the
background pictures. But it had the disadvantage that it was difficult for an inner structure to
correctly interrupt the outer mc-chunk if it can’t control the group level. For example this didn’t
work due to the grouping inserted by the user:

\tagstructbegin{tag=P}
\tagmcbegin{tag=P}
Start paragraph
{% user grouping
\tag_mc_end_push:
\tagstructbegin{tag=Em}
\tagmcbegin{tag=Em}
\emph{Emphasized test}
\tagmcend
\tagstructend
\tag_mc_begin_pop:n{}
}/, user grouping
Continuation of paragraph
\tagmcend
\tagstructend

The reading order was then wrong, and the emphasized text moved in the structure at the
end.

So starting with version 0.9 this has been reverted. The attribute is now global again. This
solves the “interruption” problem, but has its price: Material inserted by the output routine
must be properly guarded. For example

\DocumentMetadata{uncompress}
\documentclass{article}

\pagestyle{headings}

\begin{document}

\sectionmark{HEADER}
\AddToHook{shipout/background}{\put (5cm,-5cm) {BACKGROUND}}
\tagmcbegin{tag=P}Page 1\newpage Page 2\tagmcend
\end{document}

Here the header and the background code on the first page will be marked up as paragraph
and added as chunk to the document structure. The header and the background code on the
second page will be marked as artifact. The following figure shows how the tags looks like.

20

W E Tags

W {ﬁ‘ <Document =

) BACKGROUNDO HEADER1

) Page 1
) Page 2

It is therefore from now on important to correctly markup such code. Header and footer are
now marked as artifacts (see below). If they contain code which needs a different markup it
still must be added explicitly. With packages like fancyhdr or scrlayer-scrpage it is quite easy
to add the needed code.

3.2.5 Tips

e Mark commands inside floats should work fine (but need perhaps some compilation
rounds in generic mode).

* In case you want to use it inside a \savebox (or some command that saves the text inter-
nally in a box): If the box is used directly, there is probably no problem. If the use is later,
stash the marked content and add the needed \tagmcuse directly before or after the box
when you use it.

* Don't use a saved box with markers twice.
* If boxes are unboxed you will have to analyze the PDF to check if everything is ok.

¢ If you use complicated structures and commands (breakable boxes like the one from
tcolorbox, multicol, many footnotes) you will have to check the PDE

3.2.6 Header and Footer

Tagging header and footer is not trivial. At first on the technical side header and footer are
typeset and attached to the page during the output routine and the exact timing is not really
under control of the user. That means that when adding tagging there one has to be careful
not to disturb the tagging of the main text—this is mostly important in luamode where the
attributes are global and can easily spill over.

At second one has to decide about how to tag: in many cases header and footer can simply be
ignored, they only contain information which are meant to visually guide the reader and so are
not relevant for the structure. This means that normally they should be tagged as artifacts. The
PDF reference offers here a rather large number of options here to describe different versions
of “ignore this”. Typically the header and footer should get the type Pagination and this types
has a number of subtypes like Header, Footer, PageNum. It is not yet known if any technology
actually makes use of this info.

But they can also contain meaningful content, for example an address. In such cases the
content should be added to the structure (where?) but even if this address is repeated on every
page at best only once. All this need some thoughts both from the users and the packages and
code providing support for header and footers.

21

(18 0 obj | Y%Link Object
<< /TyRe /Annot /Subtype/Link
/Rect\ [196.109 494.573 399.167 506.831]

| /StructParent 16 |
/A<</Type/Agtion /S/URI /URI(https://github.com/u-fischer/tagpdf)>>

4</ype /MCR /Pg 8 0 R /MCID 655 19 0 R|1>>

endoblj};

5 0 ob renttree

<< /Nins

[....16 {17 O R/...] >>

endobj

Figure 5: Structure needed for a link annotation

22

For now tagpdf added some first support for automatically tagging: Starting with version
0.92 header and footer are by default automatically marked up as (simple) artifacts.

With the key exclude-header-footer the behavior can be changed: The value false disables
the automatic tagging, the value pagination add additionally an /Artifact structure with the
attribute /Pagination.

If some additional markup (or even a structure) is wanted, something like this should be
used (here with the syntax of the fancyhdr package) to close the open mc-chunk and restart if
after the content:

\ExplSyntaxOn
\cfoot{\leavevmode
\tag_mc_end_push:
\tagmcbegin{artifact=pagination/footer}
\thepage
\tagmcend
\tag_mc_begin_pop:n{artifact}}
\ExplSyntax0ff

3.2.7 Links and other annotations

Annotations (like links or form field annotations) are objects associated with a geometric region
of the page rather than with a particular object in its content stream. Any connection between
alink or a form field and the text is based solely on visual appearance (the link text is in the
same region, or there is empty space for the form field annotation) rather than on an explicitly
specified association.

To connect such a annotation with the structure and so with surrounding or underlying text
a specific structure has to be added, see 5: The annotation is added to a structure element as
an object reference. It is not referenced directly but through an intermediate object of type
OBJR. To the dictionary of the annotation a /StructParent entry must be added, the value is a
number which is then used in the ParentTree to define a relationship between the annotation
and the parent structure element.

To support this, tagpdf offers currently two commands

\tag_struct_parent_int:

This insert the current value of a global counter used to track such objects. It can be used to
add the /StructParent value to the annotation dictionary.

\tag_struct_insert_annot:nn{(object reference)}{ (struct parent number)}

This will insert the annotation described by the object reference into the current structure by
creating the OBJR object. It will also add the necessary entry to the parent tree and increase the
global counter referred to by \tag_struct_parent_int:. It does nothing if (structure) tagging
is not activated.

Attention! As the second command increases the global counter at the end it changes the
value given back by the first. That means that if nesting is involved care must be taken that the
correct numbers is used. This should be easy to fulfill for most annotations, as there are boxes.
There the second command should at best be used directly behind the annotation and it can
make use of \tag_struct_parent_int:. For links nesting is theoretically possible, and it could
be that future versions need more sophisticated handling here.

23

In environments which process their content twice like tabularx or align it would be the
best to exclude the second command from the trial step, but this will need better support from
these environments.

Typically using this commands is not often needed: Since version 0.81 tagpdf already
handles (unnested) links, and form fields created with the 13pdffield package will be handled
by this package.

The following listing shows low-level to create link where the two commands are used:

\pdfextension startlink

attr
{
/StructParent \tag_struct_parent_int: %<----
}
user {
/Subtype/Link
/A
<<
/Type/Action
/8/URI
/URI (http://www.dante.de)
>>
}

This is a link.
\pdfextension endlink
\tag_struct_insert_annot:xx {\pdfannot_link_ref_ last:}{\tag_struct_parent_int:}

3.2.8 Math

Math is still a problem but some progress has been made. To tag math you have to surround it
with a Formula structure. But the content of such a structure is handled by readers as a black
box so additional data is needed for accessibility.

There are a number of theoretical options here:

1. One can add an alternative text (/Alt) or an /ActualText to the structure element either
some text manually provided by the author or (with the math module in the latex-lab
bundle) the IXIgX-source).

2. One can add an alternative text (/Alt or /ActualText) to the MC-chunks.

3. One canbuild inside the Formula structure element a tree with MathML structure elements
— with PDF 2.0 this not require to declare new tags as the MathML name space is built-in.

4. One can in PDF 2.0 attach a MathML file and/or the I4TX-source as associated file to the
Formula structure (or to one or more MC-chunks).

The question is how these work in reality.

Option 1 and 2 give not too bad results with a screen reader, but can require manual work
and if you are unlucky the reader drops important part of the math (like punctuation symbols).
Exploring the equation is not possible.

Option 3 creates many structure elements. E.g. I have seen an example where every single
symbol has been marked up with tags from MathML along with an /ActualText entry and an
entry with alternate text which describes how to read the symbol. The PDF then looked like this

24

Generic
mode only

/mn <</MCID 6 /ActualText<FEFF0034>/A1t(: open bracket: four)>>BDC
/mn <</MCID 7 /ActualText<FEFF0033>/A1t(third s)>>BDC

/mo <</MCID 8 /ActualText<FEFF2062>/A1t(times)>>BDC

If this is really the way to go one would need some script to add the mark-up as doing it
manually is too much work and would make the source unreadable — at least with pdflatex and
the generic mode. In lua mode is it possible to hook into themlist_to_hlist callback and add
marker automatically. Some first implementation in this direction has been done by Marcel
Kriiger in the luamml project. But up-to-now it was not possible to test the usability of this
approach: With the exception of the html derivation with ngpdf no PDF-viewer/screen reader
combination seems to make use of such structures. I'm not sure anyway that this is the best
way to do math. It looks rather odd that a document should have to tell a screen reader in such
detail how to read an equation.

The last option 4 has been implemented in the math module in the 1atex-1ab bundle. Here
happily a proof of concept was possible: With development versions of foxit and the NVDA
reader it was possible to access an attached MathML and get speech output from it [11, 12].
See also [7] for some examples and section 4 for some more remarks and tests.

3.2.9 Split paragraphs

A problem in generic mode are paragraphs with page breaks. As already mentioned the end
marker EMC must be added on the same page as the begin marker. But it is in pdflatex very
difficult to inject something at the page break automatically. One can manipulate the shipout
box to some extend in the output routine, but this is not easy and it gets even more difficult if
inserts like footnotes and floats are involved: the end of the paragraph is then somewhere in
the middle of the box.

So with pdflatex in generic mode one until now had to do the splitting manually.

The example mc-manual-para-split demonstrates how this can be done. The general idea
was to use \vadjust in the right place:

\tagmcbegin{tag=P}

fringilla, ligula wisi commodo felis, ut adipiscing felis dui in
enim. Suspendisse malesuada ultrices ante.), page break
\vadjust{\tagmcend\pagebreak\tagmcbegin{tag=P}}

Pellentesque scelerisque

sit amet, lacus.\tagmcend

Starting with version 0.92 there is code which resolves this problem. Basically it works like
this: every mc-command issues a mark command (actually two slightly different). When the
page is built in the output routine this mark commands are inspected and from them IXTgX can
deduce if there is a mc-chunk which must be closed or reopened. The method is described in
Frank Mittelbach’s talk at TUG 2021 “Taming the beast — Advances in paragraph tagging with
pdfTeX and XeTeX” https://youtu.be/SZHIeevyo3U?7t=19551.

Please note

25

https://youtu.be/SZHIeevyo3U?t=19551

* Typically you will need more compilations than previously, don't rely on the rerun mes-
sages, but if something looks wrong rerun.

* The code relies on that related \tagmcbegin and \tagmcend are in the same boxing level.
If one is in a box (which hides the marks) and the other in the main galley, things will go
wrong (longtable is for example problematic).

3.2.10 Automatic tagging of paragraphs

Another feature that emerged from the IXTgX tagged PDF project are hooks at the begin and
end of paragraphs. tagpdf makes use of these hooks to tag paragraphs. In the first version it
added only one structure, but this proved to be not adequate:

Paragraphs in IXTgX can be nested, e.g., you can have a paragraph containing a display quote,
which in turn consists of more than one (sub)paragraph, followed by some more text which all
belongs to the same outer paragraph.

In the PDF model and in the HTML model that is not supported: the rules in PDF specifica-
tion do not allow P-structures to be nested — a limitation that conflicts with real live, given that
such constructs are quite normal in spoken and written language.

The approach we take (starting with march 2023, version 0.98e) to resolve this is to model
such “big” paragraphs with a structure named text-unit and use P (under the name text) only
for (portions of) the actual paragraph text in a way that the Ps are not nested. As a result we
have for a simple paragraph two structures:

<text-unit>
<P>
The paragraph text ...
</P>

</text-unit

In the case of an element, such as a display quote or a display list inside the paragraph, we
then have

<text-unit>
<text>
The paragraph text before the display element ...
</text>
<display element structure>
Content of the display structure possibly involving inner <text-unit> tags
</display element structure>
<text>
. continuing the outer paragraph text
</text>
</text-unit>

In other words such a display block is always embedded in a <text-unit> structure, possibly
preceded by a <text>...</text> block and possibly followed by one, though both such blocks
are optional. More information about this can be found in the documentation of latex-lab-
block-tagging.

As a consequence tagpdf now adds two structures if paratagging is activated. The new code
to tag display blocks extends this code to handle the nesting of lists and other display structures.

26

The automatic tagging require that for every begin of a paragraph with the begin hook code
there a corresponding end with the closing hook code. This can fail, e.gif a vbox doesn’t correctly
issue a \par at the end. If this happens the tagging structure can get very confused. At the
end of the document tagpdf checks if the number of outer and inner start and end paragraph
structures created with the automatic paratagging code are equal and it will error if not.

The automatic tagging of paragraphs can be deactivated completely or only the outer level
with the \tagtool keys para and para-flattened or with the (now deprecated) commands
\tagpdfparaOn and \tagpdfparaOff.

Nesting the activation and deactivation of the tagging of paragraphs can be quite difficult.
For example if it is unclear if the inner code issues a \par or not it is not trivial to exclude an
end hook for every excluded begin hook. In such cases it can be easier to use the paratag key
with the value NonStruct to convert some P-structures into NonStruct-structures without real
meaning.

3.3 Task 2: Marking the structure

The structure is represented in the PDF with a number of objects of type StructElem which build
atree: each of this objects points back to its parent and normally has a number of kid elements,
which are either again structure elements or — as leafs of the tree — the marked contents chunks
marked up with the tagmc-commands. The root of the tree is the StructTreeRoot.

3.3.1 Structure types

The tree should reflect the semantic meaning of the text. That means that the text should be
marked as section, list, table head, table cell and so on. A number of standard structure types is
predefined, see section 5 but it is allowed to create more. If you want to use types of your own
you must declare them. E.g. this declares two new types TAB and FIG and bases them on P:

\tagpdfsetup{
role/new-tag = TAB/P,
role/new-tag = FIG/P,

}

3.3.2 Sectioning

The sectioning units can be structured in two ways: a flat, html-like and a more (in pdf/UA2
basically deprecated) xml-like version. The flat version creates a structure like this:

<H1>section header</H1>
<P> text</P>
<H2>subsection header</H2>

So here the headings are marked according their level with H1, H2, etc.
In the xml-like tree the complete text of a sectioning unit is surrounded with the Sect tag,
and all headers with the tag H. Here the nesting defines the level of a sectioning heading.

27

<Sect>
<H>section heading</H>
<P> text</p>
<Sect>
<H>subsection heading</H>
</Sect>
</Sect>
The flat version is more IXTgX-like and it is rather straightforward to patch \chapter, \section
and so on to insert the appropriates H... start and end markers. The xml-like tree is more difficult

to automate. It has been implemented in the sec module in latex-lab, but can break if sectioning
commands are hidden inside boxes.

3.3.3 Commands to define the structure

The following commands can be used to define the tree structure:

\tagstructbegin{(key-val-list)}
\tag_struct_begin:n{(key-val-list)}

These commands start a new structure. They don'’t start a group. They set all their values
globally.
The key-val list understands the following keys:

tag Thisisrequired. The value of the key is normally one of the standard types listed in section
5. Itis possible to setup new tags/types, see the same section. The value can also be of the
form type/NS, where NS is the shorthand of a declared name space. Currently the names
spaces pdf, pdf2, mathml and user are defined. This allows to use a different name space
than the one connected by default to the tag. But normally this should not be needed.

stash Normally a new structure inserts itself as a kid into the currently active structure. This
key prohibits this. The structure is nevertheless from now on “the current active structure”
and parent for following marked content and structures.

label This key sets a label by which one can refer to the structure. Currently the key writes a
property whose name starts with tagpdfstruct- to the aux-file with the two attributes
tagstruct (the structure number) and tagstructobj (the object reference) but also stores
the name and the structure number into a prop for use in the current compilation. The
label is e.g. used by \tag_struct_use:n and by the ref key (which can refer to future
structures).

parent With the parent key one can choose another parent. The value is a structure number
which must refer to an already existing, previously created structure. Such a structure
number can have been stored previously with \tag_get :n, but one can also use a label on
the parent structure and then use \property_ref :nn{tagpdfstruct-label}{tagstruct}
to retrieve it.

firstkid If this key is used the structure is added at the left of the kids of the parent structure (if
the structure is not stashed). This means that it will be the first kid of the structure (unless
some later structure uses the key too). This can be needed e.g. for a caption as the PDF
reference requires it to be the first or last kid of its structure.

28

alt This key inserts an /A1t value in the dictionary of structure object, see section 4. The
value is handled as verbatim string and hex encoded. The value will be expanded first
once (so works like the key alttext-o in previous versions which has been removed). If
the value is empty, nothing will happen.

That means that you can do something like this:

\newcommand\myalttext{\frac{a}{b}}
\tagstructbegin{tag=P,alt=\myalttext}

and it will insert \frac{a}{b} (hex encoded) in the PDE In case that the text begins with
a command that should not be expanded protect it e.g. with a \empty.

actualtext This key inserts an /ActualText value in the dictionary of structure object, see
section 4. The value is handled as verbatim string. The value will be expanded first once
(so works like the key alttext-o in previous versions which has been removed). If the
value is empty, nothing will happen.

That means that you can do something like this:

\newcommand\myactualtext{X}
\tagstructbegin{tag=P,actualtext=\myactualtext}

and it will insert X (hex encoded) in the PDE In case that the text begins with a command
that should not be expanded protect it e.g. with a \empty

attribute This key takes as argument a comma list of attribute names (use braces to protect
the commas from the external key-val parser) and allows to add one or more attribute
dictionary entries in the structure object. As an example

\tagstructbegin{tag=TH,attribute= TH-row}

See also section 3.3.6.

attribute-class This key takes as argument a comma list of attribute names (use braces to
protect the commas from the external key-val parser) and allows to add them as attribute
classes to the structure object. As an example

\tagstructbegin{tag=TH,attribute-class= TH-row}

See also section 3.3.6.

title This key allows to set the dictionary entry /T (for a title) in the structure object. The value
is handled as verbatim string and hex encoded. Commands are not expanded.

29

title-o This key allows to set the dictionary entry /T in the structure object. The value is ex-
panded once and then handled as verbatim string like the title key.

AF Thiskeyallows to reference an associated file in the structure element. The value should be
the name of an object pointing to the /Filespec dictionary as expected by \pdf _object_ref:n
from a current 13kernel. For example:

\group_begin:

\pdfdict_put:nnn {1_pdffile/Filespec} {AFRelationship}{/Supplement}
\pdffile_embed_file:nnn{example-input-file.tex}{}{tag/AFtest}
\group_end:

\tagstructbegin{tag=P,AF=tag/AFtest}

As shown, the wanted AFRelationship can be set by filling the dictionary with the value.
The mime type is here detected automatically, but for unknown types it can be set too.
See the 13pdffile documentation for details. Associated files are a concept new in PDF
1.7, but the code currently doesn’t check the pdf version, it is your responsibility to set it
(this can be done with the pdfversion key in \DocumentMetadata).

root-AF This key allows to reference an associated file in the root structure element. The use
of the key is no longer usefull as ngpdf [3] will change its implementation and use files
attached to the Catalog.

root-supplemental-file This is a variant of the previous key. It takes as argument a file name. It
then embeds this file with /AFRelationship /Supplement and appends it as associated
file to the structure root. This key is like root-AF no longer recommended. Use the
following key instead.

catalog-supplemental-file This key should be used instead of root-supplemental-file. It
takes as argument a file name. It then embeds this file with /AFRelationship /Supplement
and appends it as associated file to the Catalog. ngpdf [3] will store a . css attached in
this way and reference it in the head of the html. If a htm1 is attached in this way, ngpdf
will copy the content into the head of the derived html. This means that the content of
such an html file should normally be some html snippet suitable for the head, e.g. some
css-code inside <style> tags.

AFinline This key allows to embed an associated file with inline content. The value is some
text, which is embedded in the PDF as a text file with mime type text/plain.

\tagstructbegin{tag=P,AFinline=Some extra text}

AFinline-o This is like AFinline, but it expands the value once.

texsource This is like AFinline-o, but it creates a tex-file, with mime type application/x-tex
and the AFRelationship Source. It also sets the /Desc key to a (currently) fix text to satisfy
some validators.

30

mathml This is like AFinline-o, but it creates a xml-file, with mime type application/xml and
the AFRelationship Supplement. It also sets the /Desc key to a (currently) fix text to satisfy
some validators.

lang This key allows to set the language for a structure element. The value should be a bcp-
identifier, e.g. de-De. It can also be set “from the outside” for all structures in the current
group with \tagpdfsetup and the text/lang key.

ref This key allows to add references to other structure elements, it adds the /Ref array to the
structure. The value should be a comma separated list of structure labels set with the 1abel
key. e.g. ref={labell,label2}. It can be used more than once in the key/value argument
and combines the references. See below in section 3.3.4 for an extended discussion about
the /Ref array.

E This key sets the /E key, the expanded form of an abbreviation or an acronym (I couldn’t
think of a better name, so I sticked to E).

phoneme This key sets the /Phoneme key, a pronunciation hint. The value should be a IPA text
(the PDF spec allows other variants but this not yet implemented). This is a new key from
PDF 2.0 but as far as I know not used by any viewer.

\tagstructend
\tag_struct_end:

These commands end a structure. They don’t end a group and it doesn’t matter if they are in
another group as the starting commands.

\tagstructuse{(label)}
\tag_struct_use:n{(label)}

These commands insert a structure previously stashed away as kid into the currently active
structure. A structure should be used only once, if the structure already has a parent you will
get a warning.

3.3.4 Updating structure keys

In a number of cases structures must be updated later. Such updates often can not simply
replace values but must extend them in special ways. For this a generic commands exists.
Currently it supports updating the /A key (attributes) and the Ref key.

\tag_struct_gput :nnn{(structurenumber)}{{keyword)}{{value)}

The allowed (keywords) are ref, ref _label ref_dest, ref_num and attribute.

This command allows to add the value, the target structure of the Ref key, with four methods:
directly as object reference, through a label name set with the 1abel key, through a destination
name if a \MakeLinkTarget has been used in the target structure—this also works if hyperref
has not been loaded—and through the structure number, which has been stored e.g. in a label.

With the keyword attribute the attribute of the structure is extended. The value is the
content of one attribute dictionary, so for example /0 /Layout /BBox [10 10 50 50].

31

3.3.5 Root structure

A document should have at least one structure which contains the whole document. A suitable
tag is Document. Such a root is now always added automatically. Its type can be changed with
the key activate.

3.3.6 Attributes and attribute classes

Structure Element can have so-called attributes. A single attribute is a dictionary (or a stream
but this is currently not supported by the package as I don't know an use-case) with at least
the required key /0 (for “Owner” which describes the scope the attribute applies too. As an
example here an attribute that can be attached to tabular header (type TH) and adds the info
that the header is a column header:

<</0 /Table /Scope /Column>>

One or more such attributes can be attached to a structure element. It is also possible to
store such an attribute under a symbolic name in a so-called “ClassedMap” and then to attach
references to such classes to a structure.

To use such attributes you must at first declare it in \tagpdfsetup with the key role/new-
attribute. This key takes two argument, a name and the content of the attribute. The name
should be a sensible key name, it is converted to a pdf name with \pdf_name_from_unicode_e:n,
so slashes and spaces are allow. The content should be a dictionary without the bracket.

\tagpdfsetup
{
role/new-attribute =
{TH-col}{/0 /Table /Scope /Column},
role/new-attribute =
{TH-row}{/0 /Table /Scope /Row},
}

Attributes are only written to the PDF when used, so it is not a problem to predeclare a
number of standard attributes.

It is your responsibility that the content of the dictionary is valid PDF and that the values
are sensible!

Attributes can then be used with the key attribute or attribute-class which both take a comma
list of attribute names as argument:

\tagstructbegin{tag=TH,
attribute-class= {TH-row,TH-col},
attribute = {TH-row,TH-col},
}

3.4 Task 3: tree Management

When all the document content has been correctly marked and the data for the trees has been
collected they must be flushed to the PDE This is done automatically (if the package has been
activated) with an internal command in an end document hook.

32

__tag_finish_structure:

This will hopefully write all the needed objects and values to the PDE (Beside the already
mentioned StructTreeRoot and StructElem objects, additionally a so-called ParentTree is
needed which records the parents of all the marked contents bits, aRolemap, perhaps a ClassMap
and object for the attributes, and a few more values and dictionaries).

3.5 A fully marked up document body

The following shows the marking needed for a section, a sentence and a list with two items. It
is obvious that one wouldn't like to have to do this for real documents. If tagging should be
usable, the commands must be hidden as much as possible inside suitable ITEX commands
and environments.

\begin{document}
\tagstructbegin{tag=Document}

\tagstructbegin{tag=Sect}
\tagstructbegin{tag=H}
\tagmcbegin{tag=H} Javoid page break!
\section{Section}
\tagmcend
\tagstructend
\tagstructbegin{tag=P}
\tagmcbegin{tag=P,raw=/A1t (x)}
a paragraph\par x
\tagmcend
\tagstructend

\tagstructbegin{tag=L} %List
\tagstructbegin{tag=LI}

\tagstructbegin{tag=Lbl}

\tagmcbegin{tag=Lbl}

1.

\tagmcend

\tagstructend

\tagstructbegin{tag=LBody}

\tagmcbegin{tag=P}

List item body

\tagmcend

\tagstructend %lbody
\tagstructend JLi

\tagstructbegin{tag=LI}
\tagstructbegin{tag=Lbl}
\tagmcbegin{tag=Lbl}
2.
\tagmcend

33

\tagstructend
\tagstructbegin{tag=LBody}
\tagmcbegin{tag=P}
another List item body
\tagmcend

\tagstructend %lbody

\tagstructend JLi

\tagstructend JL

\tagstructend Y%Sect
\tagstructend %Document
\end{document}

3.6 Interrupting the tagging

Experience showed that it must be possible to interrupt tagging in some places. For example
various packages do trial typesetting to measure text and this shouldn’t create structures. There
are therefore a number of commands for various use cases®

Warning! Stopping tagging should be done only with care and when it is ensured that no
code inside the stopped part gets confused. Most importantly currently tagging should not be
stopped if a page break can occur or the output routine is called.

\tag_suspend:n{(label)}
\tag_resume:n{(label)}

These commands suspend and resume tagging in the current group by switching local
booleans. They also stop the increasing of the counters which keep track of paragraphs if the
correct wrapper commands are used.

Restarting tagging is normally only needed if groups can’t be used and then must be done
with care: \tag_resume:n should normally only restart tagging if the corresponding stop com-
mand actually stopped tagging. This is implement through a local counter which keeps track
of the level.

The (label) can be used to identify the command in debugging message. The label is not
expanded and so can for example be a single command token.

The commands are the L3-layer versions of \SuspendTagging and \ResumeTagging and will
be available in the kernel with the 2024 november release.

\tag_suspend:n{\outercommand}
\tag_suspend:n{\innercommand}
\tag_resume:n{\innercommand}

\tag_resume:n{\outercommand}

\tag_stop:
\tag_start:

Sit is quite possible that some of the commands will disappear again if we realize that they are not fitting!

34

\tagstop

\tagstart
\tag_stop:n{(label)}
\tag_start:n{(label)}

These commands are now deprecated in favor or \tag_suspend:n and \tag_resume:n but
are still provided for some time.

3.7 Adding tagging to commands

As mentioned above the mc-markers should not be nested. Basically you write:

\tagmcbegin{..}some text ...\tagmcend
<optional structure commands>
\tagmcbegin{..}some other text\tagmcend

This is quite workable as long as you mark everything manually. But when defining com-
mands you have to ensure that they correctly push and pop the mc-chunks where needed.

4 Alternative text, ActualText and text-to-speech software

The PDF format allows to add alternative text through the /Alt and the /ActualText key. Both
can be added either to the marked content in the page stream or to the object describing the
structure.

The value of /ActualText (inserted by tagpdf with actualtext) is meant to replace single
characters or rather small pieces of text. It can be used also without any tagging (e.g. with the
package accsupp). If the PDF reader support this (adobe reader does, sumatra not) one can
change with it how a piece of text is copied and pasted e.g. to split up a ligature.

/Alt (inserted by tagpdf with alt) is a key to improve accessibility: with it one can add to a
picture or something else an alternative text.

The file ex-alt-actualtext.tex shows some experiments I made with both keys and text-
to-speech software (the in-built of adobe and nvda). To sum them up:

* The keys have an impact on text-to-speech software only if the document is fully tagged.
* /ActualText should be at best used around short pieces of marked content.

* /Alt is used at best with a structure — this avoids problems with luatex where marked
contents blocks can be split over pages.

* To some extend one can get a not so bad reading of math with the alternative text.

5 Standard types and new tags

The tags used to describe the type of a structure element can be rather freely chosen. PDF 1.7
and earlier only requires that in a tagged PDF all types should be either from a known set of
standard types or are “role mapped” to such a standard type. Such a role mapping is a simple
key-value in the RoleMap dictionary.

So instead of H1 the type section could be used. The role mapping can then be declared
with the role/new-tag key:

35

\tagpdfsetup{role/new-tag = section/H1}

In PDF 2.0 the situation is a bit more complicated. At first PDF 2.0 introduced name spaces.
That means that a type can have more than one “meaning” depending on the name space it
belongs to. section (name space A) and section (name space B) are two different types.

At second PDF 2.0 still requires that a tagged PDF maps all types to a standard type, but now
there are three sets of standard types (The meanings of the PDF types can be looked up in the
PDEF-references [1, 4]):

1. The standard structure namespace for PDF 1.7, also called the default standard structure
namespace. The public name of the namespace is tag/NS/pdf. This can be used to
reference the namespace e.g. in attributes. These are the structure names from PDF 1.7
(StructTreeRoot is a bit special, it is not really a structure name but nevertheless listed
here): StructTreeRoot, Document, Part, Sect, Div, Caption, NonStruct, H, H1, H2, H3, H4,
H5, H6, B L, LI, Lbl, LBody, Table, TR, TH, TD, THead, TBody, TFoot, Span, Link, Annot,
Figure, Formula, Form, Ruby, RB, RT, Warichu, WT, WB Art, BlockQuote, TOC, TOCI, Index,
Private, Quote, Note, Reference, BibEntry, Code.

2. The standard structure namespace for PDF 2.0. The public name of the namespace is
tag/NS/pdf2. This can be used to reference the namespace e.g. in attributes. These are
more or less same types as in PDE The following types have been removed from this set®:
Art, BlockQuote, TOC, TOCI, Index, Private, Quote, Note, Reference, BibEntry, Code,
and the following are new:

Artifact, DocumentFragment, Aside, H7, H8, H9, H10, Title, FENote, Sub, Em, Strong.

3. MathML 3.0 as an other namespaces. The public name of the namespace is tag/NS/mathml.
This can be used to reference the namespace e.g. in attributes. There are nearly 200 types
in this name space, so I refrain from listing them here.

To allow to this more complicated setup the syntax of the role/new-tag key has been
extended. It now takes as argument a key-value list with the following keys. A normal document
shouldn’t need the extended syntax, the simple syntax section/H1 should in most cases do the
right thing.

tag This is the name of the new type as it should then be used in \tagstructbegin.

tag-namespace This is the namespace of the new type. The value should be a shorthand of
anamespace. The allowed values are currently pdf, pdf2, mathml and user. The default
value (and recommended value for a new tag) is user. The public name of the user
namespace is tag/NS/user. This can be used to reference the namespace e.g. in attributes.

role This is the type the tag should be mapped too. In a PDF 1.7 or earlier this is normally a
type from the pdf set, in PDF 2.0 from the pdf, pdf2 or mathml set. It can also be a user
type, then this user tag must have been declared before. The PDF format allows mapping
to be done transitively. But you should be aware that tagpdf can’t (or more precisely won't)
check if some unusual role mapping makes really sense, this lies in the responsibility of
the author.

6They still can be used in a PDF 2.0 document!

36

role-namespace The default value is the default namespace of the role: pdf2 for all types in this
set, pdf for the type which exist only in PDF 1.7, mathml for the MathML types, and for
previously defined user types whatever namespace has been set there. With this key the
value can be overwritten.

unknown key An unknown key is interpreted as a tag/role, this preserves the old syntax. So

this two calls are equivalent:

\tagpdfsetup{role/new-tag = section/H1}
\tagpdfsetup{role/new-tag = {tag=section,role=H1}}

The exact effects of the keys depend on the PDF version. With PDF 1.7 or older the names-
pace keys are ignored, with PDF 2.0 the namespace keys are use to setup the correct rolemaps.
The namespace key is also used to define the default namespace if the type is used as a role or
as tag in a structure.

5.1 The latex namespace

Starting with version 0.98 work has started to setup specific latex tags. In PDF 2.0 in form of a
special name space, with PDF 1.7 or older the tags are role mapped. This is work in progress
and bound to change.

5.2 The user namespace

As mentioned above new tags are created by default in the user namespace. Namespaces are
identified through an ID which is normally given as an URI. By default tagpdf creates an random
URI for the user namespace but it is possible to change that:

\tagpdfsetup{role/user-NS = somestring}

will create use the URI https://www.latex-project.org/ns/local/somestring as ID for
the namespace.

5.3 Fallback RoleMap

As mentioned above PDF 2.0 support name spaces for tags. This is quite nice. At first because
it avoid name clashes, but also because it allow to build a cleaner model of the document
structure.

But sadly support for PDF 2.0 is still quite scarce and while most PDF readers have no
problems to open and render a PDF 2.0 file they don't “see” the role mapping if name spaces
are used. Therefore since version 0.98t tagpdf adds in PDF 2.0 files additionally also a global
/RoleMap dictionary as a fallback for such processors.

37

5.4 Mathml

In PDF 2.0 mathml tags have their own name space and can be freely used. In PDF 1.7. they
can only be used if they are rolemapped to a standard type. By default they are not added to
the /RoleMap dictionary, but this can be forced with \tagpdfsetup{role/mathml-tags}. Please
note that this adds mathml at the end of the document and overwrites tags with the same name
without warning.

6 Checking parent-child rules

The PDF references formulate various rules about whether a structure can be a child of another
structure, e.g. a Sect can not be a child of P. In the PDF 1.7 reference this rules were rather
vague, in the PDF 2.0 reference there is a quite specific matrix, which sadly misses some of the
tags from PDF 1.7. The now released ISO norm 32005 addresses this problem and extends the
matrix to cover tags from PDF 1.7 and 2.0 (but it still misses the math tag and mathml tags).

The rules in the matrix are not a simple allowed/not allowed. Instead some rules determine
that structure elements can appear only once in a parent, or that additional requirements can
be found in the descriptions of the standard structure types, e.g. Caption often has to be the
first element in the parent structure, and elements like Part and Div inherit restrictions from
parent structures. External standards like PDF/UA can add more rules.

Altogether this doesn’'t make it easy to check if a structure tree is conformant or not without
slowing down the compilation a lot.

With version 0.98 some first steps to do checks (and to react to the result of a change) have
been implemented. Some checks will led to warning directly, but the majority will only be
visible if the log-level is increased.

Typical messages will look then like this

Package tagpdf Info: Checking Parent-Child 'pdf2:Document' --> 'latex:text-unit'
Package tagpdf Info: Parent-Child 'Document' --> 'Part'.
(tagpdf) Relation is 1 (='0..n') on line ...

Package tagpdf Warning: Parent-Child 'pdf2:Document' --> 'pdf2:Ruby'.
(tagpdf) Relation is not allowed! on line ...
(tagpdf) struct 67, text-unit --> struct 68, Ruby

The descriptions of the parent and child are rather verbose as the checks have to take role
mapping and name spaces into account. The result of a check is a number—negative if the
relation is not allowed, positive if allowed. The text in the parentheses show the symbols used
in the PDF-matrix.

Be aware

» This doesn't test all rules, it only implements (hopefully correctly) the matrix.

* There can be differences between PDF 1.7 and 2.0, e.g. FENote is role-mapped to Note in
PDF 1.7 and then has different containment rules.

* The special tag MC stands for mc-chunks, so “real content” (the matrix has containments
rules for this too).

* Currently there is only only negative number -1 but that is bound to change, depending
on if (and how) it is possible to “repair” a disallowed parent-child relation.

38

* Warnings can be wrong.

* The tags Part, Div and NoStruct are sometimes (not always) “transparent”, that means
that it depends on their parent if a child tag is allowed. The code tries to detect this, but if
a structure using one of these tags is stashed it can’t identify the parent and so won’t be
able to check the rule

Parent-child checks are not fast, so there is an option to disable them

\tagpdfsetup{debug/parent-child-check=off}

This will be speed up the compilation but should be used with care, parent-child checks are an
important tool to detect faulty structures!
They can be reenabled with

\tagpdfsetup{debug/parent-child-check=on}

When using lualatex there is also the value atend. This disables the inline checks, but at the
end of the document, the lua code will go through the structures and check the rules.

There is also an online service [8] which validates the structure with an Relax NG schema
developed by the LaTeX Team, which can be found at [9].

7 “Real” space glyphs

TeX uses only spaces (horizontal movements) to separate words. That means that a PDF reader
has to use some heuristic when copying text or reflowing the text to decide if a space is meant
as aword boundary or e.g. as a kerning. Accessible document should use real space glyphs
(U+0032) from a font in such places.

With the key activate/spaces you can activate such space glyphs.

With pdftex this will simply call the primitive \pdf interwordspaceon. pdftex will then insert
at various places a char from a font called dummy-space. Attention! This means that at every
space there are additional font switches in the PDF: from the current font to the dummy-space
font and back again. This will make the PDF larger. As \pdfinterwordspaceon is a primitive
function it can’t be fine tuned or adapted. You can only turn it on and off and insert manually
such a space glyph with \pdffakespace.

With luatex (in luamode) activate/spaces is implemented with a lua-function which is
inserted in two callbacks and marks up the places where it seems sensible to inter a space
glyph. Later in the process the space glyphs are injected — the code will take the glyph from the
current font if this has a space glyph or switch to the default latin modern font. The current
code works reasonable well in normal text. activate/spaces can be used without actually
tagging a document.

The key-value debug/show=spaces will show lines at the places where in lua mode spaces are
inserted and so can help you to find problematic places. For listings —which have a quite specific
handling of spaces — you can find a suggestion in the example ex-space-glyph-listings.

Attention: Even with real spaces copy& pasting of code doesn’t need to give the correct
results: you get spaces but not necessarily the right number of spaces. The PDF viewers I tried
all copied four real space glyphs as one space. I only got the four spaces with the export to text
or xml in the AdobePro.

\pdffakespace

39

This is in pdftex a primitive. It inserts the dummy space glyph. tagpdf defines this command
also for luatex — attention if can perhaps insert break points.

\tag_space_off:
\tag_space_on:

The commands allow to switch on and off the insertion of space chars. With pdftex they map
to primitive \pdfinterwordspaceoff and and \pdfinterwordspaceon which insert a whatsits
and so act globally. The luatex implementation uses an attribute which is also set globally to
stay more or less consistent with pdftex. In dvi-mode the commands do nothing.

8 Structure destinations

Standard destinations (anchors for internal links) consist of a reference to a page in the pdf and
instructions how to display it—typically they will put a specific coordinate in the left top corner
of the viewer and so give the impression that a link jumped to the word in this place. But in
reality they are not connected to the content.

Starting with pdf2.0 destinations can in a tagged PDF also point to a structure (to a /StructElem
object). GoTo links can then additionally to the /D key which points to a standard page destina-
tion also point to such a structure destination with an /SD key. Programs that e.g. convert such
a PDF to html can then create better links. (According to the reference, PDF-viewer should
prefer the structure destination over the page destination, but as far as it is known this isn't
done yet.)

At first structure destinations (and GoTo links making use of it) could natively only be created
with the dvipdfmx backend. With pdftex and lualatex it was only possible to create a restricted
type which used only the “Fit” mode. Starting with TgXlive 2022 (earlier in miktex) both engines
knew new keywords which allowed to create structure destination easily and support has been
already added to the PDF management and tagpdf. In most cases it should simply work, but
one should be aware that as one now has a destination that is actually tied to the content it gets
more important to actually consider the context and the place where such destinations are
created. It now makes a difference if the destination is created before the structure is opened or
after so in some cases code that place destinations should be changed to place them inside the
structure they belong too. One also has to consider the pages connected to the destinations:
The structure destination is bound to the page where the structure begins, if this differ from
the page of the page destination (e.g. if the destination is created by a \phantomsection in the
middle of a longer paragraph) then it may be necessary to surround destinations with a dummy
structure (a Span or an Artifact) to get the right page number.

9 Storing and reusing boxes

TgX allows to store material in boxes and to use these box once or multiple times in other
places. This poses some challenges to tagging. The listings in the following examples uses
low-level TgX box commands to avoid that changes in the XTgX commands that improve tagging
interfere in case you want to test this. To keep the examples short they don’t show the needed
\ExplSyntax0On/\ExplSyntax0ff.

40

9.1 Boxes without tagging commands

If no tagging commands were used (or if they were inactive) when the box was stored then there
is no problem to use this box with pdfl{TgX/generic mode in various places. So

\newbox\mybox
The\setbox\mybox\hbox{yellow} duck

The \box\mybox{} sun

will produce (assuming para tagging is activated) the paragraph structures “The duck” and
“The yellow sun”.

With lualdTgX/lua mode this is different: The nodes in the box will have the mc-attribute
value attached which were active when the box was saved and this value is recorded as kid
of the first paragraph. So when the lua code later wanders through the box to find all kids of
structure it will also find the content of the \usebox. This means with lual4TgX we get the two
paragraph structures “The duck yellow” and “The sun”.

The solution here is to reset the attributes before using the box:

The\setbox\mybox\hbox{yellow} duck

The \tag_mc_reset_box:N\mybox\box\mybox{} sun

The box can in both modes be used without problems many times.

9.2 Boxes with tagging commands

We assume in the following that the box contains only well balanced tagging commands and no
parts that are “untagged”. It should be possible to copy the whole box inside a \tagstructbegin/
\tagstructend pair. So the following is fine as box content

box=\tagstructbegin{...}\tagmcbegin{} balanced content\tagmcend\tagstructend
box=
\tagmcbegin{}text\tagmcend

\tagstructbegin{...}\tagmcbegin{} balanced content\tagmcend\tagstructend
\tagmcbegin{}text\tagmcend

but this not (this case could probably be handled nevertheless with a bit care at least in lua
mode)

box= text\tagmcend\tagstructbegin{...}...\tagstructend\tagmcbegin{}text

and this is absolutely unusable:

box= text\tagmcend\tagstructbegin{...}\tagmcbegin{}text

We also assume that we want to move the structure of the box to the place where the box is
used (if the structure should stay where the box is saved, simply save it and that will happen).
For this we must add a structure that we can stash and label.

41

\tag_mc_end_push: 7 interrupt an open mc
\tagstructbegin{tag=NonStruct,stash}
\edef\myboxnum{\tag_get:n{struct_num}} % store structure number
\setbox\mybox\hbox %or \vbox or ...

{content}
\tagstructend
\tag_mc_begin_pop:n{}) restart open mc

At the place where the box is then used we also have to inject this structure:

\tag_mc_end_push: % interrupt an open mc
\tag_struct_use_num:n {\myboxnum} % use structure
\box\mybox % use box
\tag_mc_begin_pop:n{}/ restart open mc

With pdfIATgX Boxes with tagging commands can currently be used only once. The tagging
commands set labels and reusing the box gives multiple label warnings.

With lual4TgX it is possible to reset the attributes as done with the untagged box and then to
reuse at least the content.

9.3 Detecting tagging commands

It is possible to detect if a box contains tagging commands by comparing the state of the mc
and structure counter:

\def\statebeforebox\inteval{\tag_get:n{struct_counter}+\tag_get:n{mc_counter}}
\setbox\mybox .
%compare numbers against \statebeforebox

9.4 Putting everything together

To tag boxes that can be both (without tagging commands or with balanced tagging commands)
the following strategy can be used:

* when storing the box put around it a structure as needed by the tagged variant:

\tag_mc_end_push: % interrupt an open mc

\tagstructbegin{tag=NonStruct,stash}

\edef\myboxnum{\tag_get:n{struct_num}} % store structure number
\def\statebeforebox{\inteval{\tag_get :n{struct_counter}+\tag_get:n{mc_counter}}}
\setbox\mybox\hbox %or \vbox or ...

{content}
%check if there is tagging content and store that

\tagstructend

\tag_mc_begin_pop:n{}), restart open mc

* when using the box the first time

- ifit has no tagging commands then reset the attribute and use the box.

42

\ExplSyntaxOn
\let\tagmcresetbox\tag_mc_reset_box:N %make a copy
\ExplSyntax0ff

The \tagmcresetbox\mybox\box\mybox{} sun

The stashed NonStruct structure is then thrown away.

— if there is a structure then use the stashed structure

\tag_mc_end_push: % interrupt an open mc
\tag_struct_use_num:n {\myboxnum} % use structure
\box\mybox % use box
\tag_mc_begin_pop:n{}/ restart open mc

* if the box is used a second time then throw an error with pdfI4TgX. With lual4TgX reset the
attributes and issue a warning.

10 Accessibility is not only tagging

A tagged PDF is needed for accessibility but this is not enough. As already mentioned there are
more requirements:

e The language must be declared by adding a /Lang xx-XX to the PDF catalog or — if the
language changes for a part of the text to the structure or the marked content. Setting
the document language can be done with the lang option of \DocumentMetadata. For
settings in marked content and structure the lang key can be used too.

¢ All characters must have a Unicode representation or a suitable alternative text. With
lualatex and open type (Unicode) fonts this is normally not a problem. With pdflatex it
could need additional \pdfglyphtounicode commands.

* Hard and soft hyphen must be distinct. In luamode this is now handled through the
activate/softhyphen key. For pdftex no solution is known.

* Spaces between words should be space glyphs and not only a horizontal movement. See
section 7.

* Various small infos must be present in the catalog dictionary, info dictionary and the page
dictionaries, e.g. metadatalike title. This can be done with the options of \DocumentMetadata.
See the documentation of 13pdfmeta for details.

11 CSS style definition for derivation to html
Derivation to html ([6] implemented by, e.g., ngpdf) can be improved by attaching CSS style

definitions in associated files with relationship supplement to the StructTreeRoot.
Such CSS style definitions can be given in two ways:

43

¢ In files with the extension .css. Such files should contain only CSS style definitions. A
derivation processor like ngpdf will store these files and include them withan <1ink rel=stylesheet href=..
in the head of the html.

e Infiles with the extension .html. Such files should contain CSS style definitions inside one
(or more) <style>...</style> html tags. The content of these files are copied directly
into the head of the derived html.

By default (if tagging is active) tagpdf embeds now such CSS style definitions. Currently the
list of files is rather short and consists of two files (with extension .html and <style>...</style>
html tags) which are provided by the tagpdf package:

* latex-align-css.html which improves the styling of amsmath alignments tagged with
MathML.

* latex-list-css.html which improves the style of list environments.
A number of configuration keys for \tagpdfsetup are provided

attach-css Boolean, initially true. It is possible to suppress the embedding of these files by
setting this key to false, attach-css=true or attach-css reverts this again.

css-list With this key developers can overwrite the list, e.g. with css-list={filel,file2}
(where all files should have either the extension html or css. css-1list= clears the list
(and so suppresses the embedding too).

css-list-remove This key allows to remove a file from the list, e.g. css-list-remove=latex-
list-css.html.

css-list-add this key allows to add more files to the list, e.g., css-1list-add=my-fancy-align-
css.html. It is also possible to attach a .css-file in this way.

These keys do not affect files added directly with root-supplemental-file.

The files in this list are attached at the end of the compilation (and so normally after the
files attached with root-supplemental-file) but you shouldn't rely on this or on a specific order
of the embedding in the html.

12 Debugging

While developing commands and tagging a document, it can be useful to get some info about
the current structure. For this a show command is provided

\ShowTagging{(key-val)}
This command takes as argument a key-val list which implements a number of show options.

mc-data This key is relevant for luamode only. It shows the data of all mc-chunks created so
far. It is accurate only after shipout, so typically should be issued after a newpage. The
value is a positive integer and sets the first mc-shown. If no value is given, 1 is used and
so all mc-chunks created so far are shown.

mc-current This key shows the number and the tag of the currently open mc-chunk. If no
chunk is open it shows only the state of the absolute counter. It works in all mode, but the
output in luamode looks different.

44

struct-stack This key shows the current structure stack. Typically it will contain at least root
and Document. With the value log the info is only written to the log-file, show stops the
compilation and shows on the terminal. If no value is used, then the default is show.

debug/structures This key is only available if the package tagpdf-debug has been loaded too.
It takes as value a number (the default is 0), and shows on the terminal and in the log
information about all structures with a number equal or larger than the number. The
data avoids to show PDF object numbers to make it more usable for test suites.

13 To-do

¢ Add commands and keys to enable/disable the checks.
¢ Check/extend the code for language tags.
* Think about math (progress: examples using luamml, associated files exists).

¢ Think about Links/Annotations (progress: mostly done, see section 3.2.7 and the code in
13pdffield)

* Keys for alternative and actualtext. How to define the input encoding? Like in Accsupp?
(progress: keys are there, but encoding interface needs perhaps improving)

* Check twocolumn documents

¢ Examples

* Write more Tests

* Write more Tests

* Unicode

* Hyphenation char

* Think about included (tagged) PDE Can one handle them?
e Improve the documentation (progress: it gets better)

* Tag as proof of concept the documentation (nearly done)

* Document the code better (progress: mostly done)

* Create dtx (progress: done)

* Find someone to check and improve the lua code

* Move more things to lua in the luamode

* Find someone to check and improve the rest of the code

¢ Check differences between PDF versions 1.7 and 2.0. (progress: WIP, namespaces done)

bidi?

45

14 History

This section lists important changes during the development of the package. More can be
found in the CHANGELOG . MD and by checking the git commits.

14.1 Changesin 0.3

In this version I improved the handling of alternative and actual text. See section 4. This change
meant that the package relies on the module 13str-convert.

I no longer try to (pdf-)escape the tag names: it is a bit unclear how to do it at best with
luatex. This will perhaps later change again.

14.2 Changesin 0.5

I added code to handle attributes and attribute classes, see section 3.3.6 and corrected a small
number of code errors.
I added code to add “real” space glyphs to the PDE see section 7.

14.3 Changesin 0.6

Breaking change! The attributes used in luamode to mark the MC-chunks are no longer
set globally. I thought that global attributes would make it easier to tag, but it only leads to
problem when e.g. header and footer are inserted. So from this version on the attributes are set
locally and the effect of a \tagmcbegin ends with the current group. This means that in some
cases more \tagmcbegin are needed and this affected some of the examples, e.g. the patching
commands for sections with KOMA. On the other side it means that quite often one can omit
the \tagmcend command.

14.4 Changes in version 0.61
* internal code adaptions to expl3 changes.

» dropped the compresslevel key — probably not needed.

14.5 Changes in version 0.8

* Asafirst step to include the code proper in the IXTX kernel the module name has changed
from uftag to tag. The commands starting with \uftag will stay valid for some time but
then be deprecated.

* Breaking change! The argument of role/new-attribute (old key name: newattribute)
option should no longer add the dictionary bracket <<. .>>, they are added by the code.

* Breaking change! The package now requires the new PDF management as provided
for now by the package pdfmanagement-testphase. pdfmanagement-testphase, prepares
the ground for better support for tagged PDF in IXTgX. It is part of a larger project to au-
tomatically generate tagged PDF https://www.latex-project.org/news/2020/11/30/
tagged-pdf-FS-study/

46

https://www.latex-project.org/news/2020/11/30/tagged-pdf-FS-study/
https://www.latex-project.org/news/2020/11/30/tagged-pdf-FS-study/

Support to add associated files to structures has been added with new keys AF, AFinline
and AFinline-o.

Breaking change! The support for other 8-bit input encodings has been removed. utf8 is
now the required encoding.

The keys lang, ref and E have been added for structures.

The new hooks of IXTgX are used to tagged many paragraphs automatically. The small
red numbers around paragraphs in the documentation show them in action. The main
problem here is not to tag a paragraph, but to avoid to tag too many: paragraphs pop up
in many places.

14.6 Changes in version 0.81

Hook code to tag links (URI and GoTo type) have been added. So normally they should
simply work if tagging is activated.

Commands and keys to allow automatic paragraph tagging have been added. See sec-
tion 3.2.10. As can be seen in this documentation the code works quite good already, but
one should be aware that “paragraphs” can appear in many places and sometimes there
are even more paragraph begin than ends.

A key to test if local or global setting of the mc-attributes in luamode is more sensible, see
3.2.4 for more details.

New commands to store and reset mc-tags.

PDF 2.0 namespaces are now supported.

14.7 Changes in version 0.82

A command \tag_if_active:TF to test if tagging is active has been added. This allow external
packages to write conditional code.

The commands \tag_struct_parent_int: and \tag_struct_insert_annot:nn have been
added. They allow to add annotations to the structure.

14.8 Changes in version 0.83

\tag_finish_structure: has been removed, it is no longer a public command.

14.9 Changes in version 0.90

Code has been cleaned up and better documented.

More engines supported The generic mode of tagpdf now works (theoretically, it is not
much tested) with all engines supported by the PDF management. So compilations with
XeI4TgX or with dvips should work. But it should be noted that these engines and backends
don’t support the interspaceword option. With Xel&TEX it is perhaps possible implement
something with \XeTeXinterchartoks, but for the dvips route I don't see an option (apart
from lots of manual macros everywhere).

47

Breaking * MC-attributes are global again In version 0.6 the attributes used in luamode to mark the
change! MC-chunks were no longer set globally. This avoided a number of problems with header
and footer and background material, but further tests showed that it makes it difficult to
correctly mark things like links which have to interrupt the current marking code—the
attributes couldn’t easily escape groups added by users. See section 3.2.4 for more details.

* key global-mc removed: Due to the changes in the attribute keys this key is not longer
needed.

* key check-tags removed: It doesn't fit. Checks are handled over the logging level.
* \tagpdfget has been removed, use the expl3 version if needed.

¢ The show commands \showtagpdfmcdata, \showtagpdfattributes, \showtagstack have
been removed and replaced by a more flexible command \ShowTagging.

* The commands \tagmcbegin and \tagmcend no longer ignore following spaces or remove
earlier one. While this is nice in some places, it also ate spaces in places where this wasn't
expected. From now on both commands behave exactly like the expl3 versions.

¢ The lua-code to add real space glyphs has been separated from the tagging code. This
means that activate/spaces now works also if tagging is not active.

* The key activate has been added, it open the first structure, see above.

14.10 Changes in version 0.92
» support for page breaks in pdftex has been added, see section 3.2.9,
* header and footer are tagged as artifacts automatically, see section 3.2.6.

* keys alttext-o and actualtext-o has been removed. alttext and actualtext will now
expand once.

14.11 Changes in version 0.93

* Support for associated files in the root element (key root-AF) has been added. This allow
e.g. to add a css-file which is be used if the PDF is converted to html.

* First steps have been done to adapt the package to planned changes in I4TgX: The com-
mand \DocumentMetadata will be added to the format and will take over the role of
\DeclareDocumentMetadata from pdfmanagement-testphase and additionally will also
load the pdf management code. This will simplify the documents as it will no longer be
needed to load the package.

» The package has now support for “structure destinations”. This is a new type of destina-
tions in PDF 2.0. For pdftex and luatex this requires new binaries. They will be included in
texlive 2022, miktex already has the new pdftex, the new luatex will probably follow soon.

* The commands \tagpdfifluatexT, \tagpdfifluatexTF hasbeenremoved \tagpdfifpdftexT,

48

14.12 Changes in version 0.94

In this version a small package, tagpdf-base has been added. It provides no-op versions of the
main expl3 user commands for packages that want to support tagging but can't be sure if the
tagpdf package has been loaded.

14.13 Changes in version 0.95
Small bug fixes.

14.14 Changes in version 0.96

The alttext key has been renamed to alt, the other key name exists as alias.

The new command \tag_struct_object_ref :n allows to create the object reference of a
structure.

anew key parent has been added to allow structures to choose their parent structure.

anew option paratag allows to change the tag name used for the automatically tagged
paragraphs.

the commands \tag_start:, \tag_stop:, \tag_stop:n and \tag_start:n allow to stop
and start tagging (for example in trial typesetting).

Small bug fixes.

14.15 Changes in version 0.98

The declarations of tag namespaces have been externalized and are now read from files
when tagpdf is loaded.

The PDF format (and some of the standards) declare various parent-child rules for struc-
ture tags. A first step to implement this rules and check if they are fulfilled have been
done. More information can be found in section 6.

As a side effect of the new rule checking, the requirements for new tags have been tight-
ened: Adding a new tag with add-new-tag now requires that the target role is defined.
Unknown roles error.

\tagmcbegin no longer requires that a tag is set, instead if will pick up the tag name from
the surrounding structure.

Structure destination are now created also with PDF< 2.0. They shouldn't harm and can
improve the html export.

14.16 Changes in version 0.98a

Small bug fixes in code and documentation.

49

14.17 Changes in version 0.98b

The main change is from now on every structure has an ID and an IDtree is added. The ID of a
structure can be retrieved with \tag_get:n see 3.2.3.

14.18 Changes in version 0.98e

¢ The main change is that the automatic paratagging uses now a two-level structure. This
accompanies development in the I£TX github in the 1atex-1ab package regarding the
tagging of blocks like lists or verbatim. See 3.2.10 and also latex-lab-block-tagging.dtx
for more background.

* The command tag_struct_end:n has been add to improve debugging.

14.19 Changes in version 0.98k

The luamode has been adapted and now allows also the compilation with dvilualatex. By default
it will insert specials for dvips into the dvi. But be aware that dvips can normally not be used
as it can’t handle open type fonts, and extended version would be needed which isn't in texlive
yet. It is also possible to use dvipdfmx as backend (which already has support for open type
fonts), for this you need to use backend=dvipdfmx in the \DocumentMetadata command. Real
space chars will work, but are currently not taken from the current font. This will be improved
in the next luaotfload version. The compilation with dvilualatex is not much tested yet.

14.20 Changes in version 0.981

In 2023 the primitives to write literal code into the pdf have been extended in all engines and
now allow to delay the expansion of their argument to the shipout. This made it possible to
greatly simplify and speed up the code used in generic mode to number the MC-chunks. In
most cases building the structure should now need only two or three compilations. The new
code requires a current pdfmanagement-testphase and is then used automatically if the new
engines are detected.

14.21 Changes in version 0.99f

Deprecated \tag_start:, \tag_stop:, \tag_stop:nand\tag_start:ninfavorof\tag_suspend:n
and \tag_resume:n.

14.22 Changes in version 0.99m

Removed/deactivated package options luamode and genericmode. Added first support for
pronunciation hints, the phoneme key.

References
[1] Adobe Systems Incorporated. Document management — Portable document format — Part

1: PDF 1.7. 1st ed. July 1, 2008. URL: https://opensource.adobe. com/dc-acrobat-sdk-
docs/pdfstandards/PDF32000_2008.pdf (visited on 02/17/2024).

50

https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/PDF32000_2008.pdf
https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/PDF32000_2008.pdf

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

Adobe Systems Incorporated. PDF Reference, sixth edition. 2006. URL: https: //opensource.
adobe.com/dc-acrobat-sdk-docs/pdfstandards/pdfreferencel.7o0ld.pdf (visited on
02/17/2024).

Dual Lab. Next-Generation PDF. URL: https://ngpdf . com.

International Standard. ISO 32000-2:2020(en). Document management — Portable docu-
ment format — Part 2: PDF 2.0. 2nd ed. Dec. 2020. URL: https://www.iso.org/obp/ui/
#iso:std:is0:32000:-2:ed-2:v1:en (visited on 04/18/2021).

PDF Accessibility Checker (PAC 2024). URL: https : //pac . pdf —accessibility . org/
(visited on 02/17/2024).
PDF Association. Deriving HTML from PDF. An update is in development. 2019. URL:

https://pdfa.org/wp-content /uploads/2019/06/Deriving HTML _from_PDF . pdf
(visited on 03/05/2025).

TEX Project. MathML Associated Files Examples. URL: https://github.com/latex3/
tagging-project/discussions/56 (visited on 02/19/2024).

ITgX Project. PDF Structure Tree Display and Validation Upload Tagged PDF. URL: https:
//texlive.net/showtags.

I4TEX Project. show_pdf tags script and Relax NG schema. URL: https://github. com/
latex3/pdf_structure.

TeX User Group. PDF accessibility and PDF standards. URL: https : //tug . org/ tug/
accessibility/.

Roman Toda et al. “PDF Document Object Model Support for Math”. In: The 5th Inter-
national Workshop on Digitization and E-Inclusion in Mathematics and Science 2024.
The DEIMS2024 Organizing Committee, 2024. URL: https://workshop.sciaccess.net/
deims2024/DEIMS2024_Proceedings.zip.

Frank Mittelbach und Ulrike Fischer. “Enhancing LATEX to Automatically Produce Tagged
and Accessible PDF”. In: The 5th International Workshop on Digitization and E-Inclusion
in Mathematics and Science 2024. The DEIMS2024 Organizing Committee, 2024. URL:
https://workshop.sciaccess.net/deims2024/DEIMS2024_Proceedings.zip.

veraPDF consortium. veraPDF. URL: https://verapdf .org/.

A Some remarks about the PDF syntax

This is not meant as a full reference only as a background to make the examples and remarks
easier to understand.

postfix notation PDF uses in various places postfix notation. This means that the operator is

=) P9 pe)

behind its arguments:

©E @)

18) (o) (r)(areference (operator R) to an object

009EI @ @
) (e o) (30)

51

https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/pdfreference1.7old.pdf
https://opensource.adobe.com/dc-acrobat-sdk-docs/pdfstandards/pdfreference1.7old.pdf
https://ngpdf.com
https://www.iso.org/obp/ui/#iso:std:iso:32000:-2:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:32000:-2:ed-2:v1:en
https://pac.pdf-accessibility.org/
https://pdfa.org/wp-content/uploads/2019/06/Deriving_HTML_from_PDF.pdf
https://github.com/latex3/tagging-project/discussions/56
https://github.com/latex3/tagging-project/discussions/56
https://texlive.net/showtags
https://texlive.net/showtags
https://github.com/latex3/pdf_structure
https://github.com/latex3/pdf_structure
https://tug.org/twg/accessibility/
https://tug.org/twg/accessibility/
https://workshop.sciaccess.net/deims2024/DEIMS2024_Proceedings.zip
https://workshop.sciaccess.net/deims2024/DEIMS2024_Proceedings.zip
https://workshop.sciaccess.net/deims2024/DEIMS2024_Proceedings.zip
https://verapdf.org/

Names PDF knows a sort of variable called a “name”. Names start with a slash and may include

any regular characters, but not delimiter or white-space characters. Uppercase and
lowercase letters are considered distinct: /A and /a are different names. /.notdef and
/Adobe#20Green are valid names.
Quite a number of the options of tagpdf actually define such a name which is later added
to the PDE I recommend strongly not to use spaces and exotic chars in such names. While
it is possible to escape such names it is rather a pain when moving them through the
various lists and commands and quite probably I forgot some place where it is needed.

Strings There are two types of strings: Literal strings are enclosed in round parentheses. They
normally contain a mix of ascii chars and octal numbers:
(gr\374\377ehello[1\050\051).

Hexadezimal strings are enclosed in angle brackets. They allow for a representation of all
characters the whole Unicode ranges. This is the default output of lualatex.

<003B00600243013D0032>.

Arrays Arrays are enclosed by square brackets. They can contain all sort of objects including
more arrays. As an example here an array which contains five objects: a number, an object
reference, a string, a dictionary and another array. Be aware that despite the spaces 15 0
R is one element of the array.

[0 15 0 R (hello) <</Type /X>> [1 2 3]]
(0) (15 0 &) ((ne110)) [«/Type /x>>] (rL 2 31)

Dictionaries Dictionaries are enclosed by double angle brackets. They contain key-value pairs.
The key is always a name. The value can be all sort of objects including more dictionaries.
It doesn’t matter in which order the keys are given.

Dictionaries can be written all in one line:
<</Type/Page/Contents 3 O R/Resources 1 O R/Parent 5 0 R>>
but at least for examples a layout with line breaks and indentation is more readable:

<<
/Type /Page
/Contents 3 O R
/Resources 1 O R
/MediaBox [0 0 595.276 841.89]
/Parent 50R
>>

(indirect) objects These are enclosed by the keywords obj (which has two numbers as prefix
arguments) and endobj. The first argument is the object number, the second a generation
number - if a PDF is edited objects with a larger generation number can be added. As
with pdflatex/lualatex the PDF is always new we can safely assume that the number is
always 0. Objects can be referenced in other places with the R operator. The content of an
object can be all sort of things.

52

streams A stream is a sequence of bytes. It can be long and is used for the real content of PDF:
text, fonts, content of graphics. A stream starts with a dictionary which at least sets the
/Length name to the length of the stream followed by the stream content enclosed by the
keywords stream and endstream.

Here an example of a stream, an object definition and reference. In the object 2 (a page
object) the /Contents key references the object 3 and this then contains the text of the
page in a stream. Tf, Tm and TJ are (postfix) operators, the first chooses the font with the
name /F15 at the size 10.9, the second displaces the reference point on the page and the
third inserts the text.

% a page object (shortened)
2 0 obj
<<
/Type/Page
/Contents 3 0 R
/Resources 1 O R

>>
endobj

%the /Contents object (/Length value is wrong)
3 0 obj
<</Length 153 >>
stream
BT
/F15 10.9 Tf 1 0 0 1 100.2 746.742 Tm [(hello)]TJ
ET
endstream
endobj

In such a stream the BT-ET pair encloses texts while drawing and graphics are outside of
such pairs.

Number tree This is a more complex data structure that is meant to index objects by numbers.
In the core is an array with number-value pairs. A simple version of number tree which
has the keys 0 and 3 is

6 0 obj
<<

/Nums [
0 [20 0R 22 0R]
3 21 O R

>>
endobj

53

This maps 0 to an array and 2 to the object reference 21 0 R. Number trees can be split
over various nodes — root, intermediate and leaf nodes. We will need such a tree for the
parent tree.

54

	Table of Contents
	Introduction
	Tagging and accessibility
	Engines and modes
	References and target PDF version
	Validation
	Examples wanted!
	Proof of concept: the tagging of the documentation itself

	Loading
	Modes and package options
	Setup and activation

	List of keys
	Tagging
	Three tasks
	Task 1: Marking the chunks: the mark-content-step
	Generic mode versus lua mode in the mc-task
	Commands to mark content and chunks
	Retrieving data
	Luamode: global or not global – that is the question
	Tips
	Header and Footer
	Links and other annotations
	Math
	Split paragraphs
	Automatic tagging of paragraphs

	Task 2: Marking the structure
	Structure types
	Sectioning
	Commands to define the structure
	Updating structure keys
	Root structure
	Attributes and attribute classes

	Task 3: tree Management
	A fully marked up document body
	Interrupting the tagging
	Adding tagging to commands

	Alternative text, ActualText and text-to-speech software
	Standard types and new tags
	The latex namespace
	The user namespace
	Fallback RoleMap
	Mathml

	Checking parent-child rules
	"Real" space glyphs
	Structure destinations
	Storing and reusing boxes
	Boxes without tagging commands
	Boxes with tagging commands
	Detecting tagging commands
	Putting everything together

	Accessibility is not only tagging
	CSS style definition for derivation to html
	Debugging
	To-do
	History
	Changes in 0.3
	Changes in 0.5
	Changes in 0.6
	Changes in version 0.61
	Changes in version 0.8
	Changes in version 0.81
	Changes in version 0.82
	Changes in version 0.83
	Changes in version 0.90
	Changes in version 0.92
	Changes in version 0.93
	Changes in version 0.94
	Changes in version 0.95
	Changes in version 0.96
	Changes in version 0.98
	Changes in version 0.98a
	Changes in version 0.98b
	Changes in version 0.98e
	Changes in version 0.98k
	Changes in version 0.98l
	Changes in version 0.99f
	Changes in version 0.99m

	References
	Some remarks about the PDF syntax

